
1

Understanding and Detecting Real-World Safety
Issues in Rust

Boqin Qin, Yilun Chen, Haopeng Liu, Hua Zhang, Qiaoyan Wen, Linhai Song, and Yiying Zhang

Abstract—Rust is a relatively new programming language designed for systems software development. Its objective is to combine the
safety guarantees typically associated with high-level languages with the performance efficiency often found in executable programs
implemented in low-level languages. The core design of Rust is a set of strict safety rules enforced through compile-time checks.
However, to support more low-level controls, Rust also allows programmers to bypass its compiler checks by writing unsafe code. As the
adoption of Rust grows in the development of safety-critical software, it becomes increasingly important to understand what safety issues
may elude Rust’s compiler checks and manifest in real Rust programs.
In this paper, we conduct a comprehensive, empirical study of Rust safety issues by close, manual inspection of 70 memory bugs, 100
concurrency bugs, and 110 programming errors leading to unexpected execution panics from five open-source Rust projects, five
widely-used Rust libraries, and two online security databases. Our study answers three important questions: what memory-safety issues
real Rust programs have, what concurrency bugs Rust programmers make, and how unexpected panics in Rust programs are caused.
Our study reveals interesting real-world Rust program behaviors and highlights new issues made by Rust programmers. Building upon
the findings of our study, we design and implement five static detectors. After being applied to the studied Rust programs and another 12
selected Rust projects, our checkers pinpoint 96 previously unknown bugs and report a negligible number of false positives, confirming
their effectiveness and the value of our empirical study.

Index Terms—Rust, Memory Bug, Concurrency Bug, Bug Study, Static Bug Detection

F

1 INTRODUCTION

Rust [1] is a programming language specifically created
for developing low-level software that is both efficient
and safe [2], [3], [4], [5]. Its main idea is to inherit most
features in C and C’s good runtime performance but to
mitigate C’s safety concerns through strict compile-time
checks. Over the past few years, Rust has experienced a
significant surge in popularity [6], [7], [8], particularly in the
realm of constructing low-level software such as operating
systems and web browsers [9], [10], [11], [12], [13].

At the core of Rust’s safety mechanisms lies the concept
of ownership. The most basic ownership rule states that each
value can have only one owner and the value is freed when
its owner’s lifetime ends. Rust builds upon this basic rule
with a set of extended rules that still guarantee memory and
thread safety. For example, the ownership can be borrowed
or moved, multiple aliases can read a value at the same time,
but at most one alias can write to a value at any time. These

• B. Qin is with China Telecom Cloud Technology Co., Ltd, Beijing, China,
100083. E-mail: bobbqqin@gmail.com. This work was done during B. Qin’s
visit to the Pennsylvania State University as a Ph.D. student with Beijing
University of Posts and Telecommunications.

• Y. Chen is with HoneycombData Inc, Santa Clara, CA, USA, 95054.
E-mail: chen2709@purdue.edu. Y. Chen contributed equally with B. Qin
in this work.

• H. Liu is with the University of Chicago, IL, USA, 60637. E-mail:
haopeng.uc@gmail.com.

• H. Zhang and Q. Wen are with Beijing University of Posts and
Telecommunications, Beijing, China, 100876. E-mail: {zhanghua288,
wqy}@bupt.edu.cn.

• L. Song is with the Pennsylvania State University, State College, PA, USA,
16802. E-mail: songlh@ist.psu.edu.

• Y. Zhang is with the University of California San Diego, CA, USA, 92093.
E-mail: yiying@ucsd.edu.

• Corresponding authors: Linhai Song and Yiying Zhang.

safety rules essentially prevent the combination of aliasing
and mutability. They are checked at compile time to thwart
severe memory and concurrency bugs from escaping into
compiled programs. Rust also supports a panic mechanism,
easily extendable by programmers to capture and prevent
errors from causing further damage at runtime. By combining
these elements, Rust achieves the runtime performance of its
compiled programs as good as unsafe languages like C, but
with much stronger safety guarantees.

While delivering safety, the safety rules enforced by
Rust restrict programmers’ control over low-level resources
and frequently hinder their ability to implement desired
functionalities. To grant programmers greater programming
flexibility, Rust introduces the ability to bypass the main
compiler safety checks by adding an unsafe label to Rust
code. This label can be applied to either an entire function,
by declaring it as unsafe, or to a specific piece of code within
a function. In the latter case, the function can still be invoked
as a safe function within safe code, which provides a way
to encapsulate unsafe code. We refer to this code pattern as
interior unsafe.

Unfortunately, the presence of unsafe code in Rust gives
rise to safety concerns as it circumvents the safety checks
performed by the Rust compiler. The inclusion of unsafe code
and unsafe encapsulation complicates Rust’s safety semantics.
Furthermore, programming errors causing runtime panics
can be exploited for denial-of-service (DoS) attacks, hurting
Rust programs’ reliability. Does unsafe code cause the same
safety issues as traditional unsafe languages? Can there
still be safety issues when programmers do not use any
“unsafe” label in their code? What happens when unsafe
and safe code interact? What are the common programming
errors leading to runtime panics? Several recent works [14],

2

Year
2012 2014 2016 2018 2020 2022

#

o
f

c
h
a
n
g
e
s

500

1000

1500

2000

2500

K
L
O
C

200

400

600

800

1000

1200

changes
KLOC

Fig. 1: Rust History. (Each blue point
shows the number of feature changes
in one release version. Each red point
shows total LOC in one release ver-
sion.)

Year
2012 2014 2016 2018 2020

#

o
f

b
u
g
s

2

4

6

8

10

12

14

Year
2012 2016 2020

Servo
Tock
Ethereum
TikV
Redox
libs

Fig. 2: Time of Studied Bugs. (Each
point shows the number of our studied
bugs that were patched during a time
period of three months.)

TABLE 1: Studied Applications and Libraries.
(The start time, the number of stars, and commits
on GitHub, total lines of source code, the number of
memory safety bugs, blocking bugs, non-blocking
bugs, and panic bugs. libraries: maximum values
among our studied libraries. There are 27 bugs
collected from the two CVE databases.)

Software Start Time Stars Commits LOC Mem Blk NBlk Panic
Servo 2012/02 14574 38096 271K 14 13 18 29
Tock 2015/05 1343 4621 60K 5 0 2 2
Ethereum 2015/11 5565 12121 145K 2 34 4 41
TiKV 2016/01 5717 3897 149K 1 4 3 6
Redox 2016/08 11450 2129 199K 20 2 3 20
libraries 2010/07 3106 2402 25K 7 6 10 7

[15], [16], [17] formalize and theoretically prove (a subset
of) Rust’s safety and interior-unsafe mechanisms. However,
it remains unclear how Rust’s language safety and unsafe
designs impact real-world Rust developers and what safety
issues occur in real Rust software. With the wider adoption
of Rust in systems software in recent years, it is crucial to
answer these questions.

In this paper, we undertake an empirical investigation
into safety issues in real-world Rust programs. We analyze
the interplay between safe and unsafe code, exploring how
their interaction can lead to memory safety issues (i.e.,
illegal memory accesses), thread safety issues (i.e., thread
synchronization issues like deadlocks and race conditions),
and unexpected program panics. Our study places specific
emphasis on the influence of Rust’s ownership and lifetime
rules, as well as Rust’s other distinctive and crucial language
features, on developers’ programming, and how the misuse
of these features causes safety issues.

Our study covers five Rust-based systems and applica-
tions (two OSes, a browser, a key-value store system, and a
blockchain system), five widely-used Rust libraries, and two
online vulnerability databases. We scrutinize their source
code, their GitHub commit logs and publicly reported bugs
by first filtering them into a small relevant set and then
manually inspecting this set. Overall, we investigate a total
of 70 memory-safety issues, 100 thread-safety issues, and 110
panic issues, as shown in Table 1.

Our study consists of three parts, and we have made
contribution in each of them. First, we study memory-safety
issues in real Rust programs by inspecting bugs in our
selected applications and libraries and by examining all Rust
issues reported on CVE [18] and RustSec [19] prior to Jun
2019. Our analysis not only focuses on understanding these
bugs’ behaviors but also delves into how their root causes
are propagated to their effects. We find that all memory-
safety bugs involve unsafe code, and (surprisingly) most
of them also involve safe code. Mistakes tend to occur
when programmers write safe code without taking sufficient
caution regarding related unsafe code, whether within the
same function or in improperly encapsulated interior-unsafe
functions. Additionally, we observe that the scope of lifetime
in Rust is challenging to reason about, particularly when
combined with unsafe code. Incorrect understanding of
lifetime causes many memory-safety issues.

Second, we investigate concurrency bugs, including both
blocking bugs where one or more threads unintentionally

become stuck, and non-blocking bugs where multiple threads
complete their execution but yield undesired results [20].
Strikingly, our research reveals that non-blocking bugs can
happen in both unsafe and safe code and that all blocking
bugs we have studied are in safe code. Although many
bug patterns in Rust follow conventional concurrency bug
patterns (e.g., double lock, atomicity violation), a significant
portion of concurrency bugs in Rust arise from programmers’
misunderstanding of Rust’s (complex) lifetime and safety
rules.

Finally, we study programming errors causing unex-
pected execution panics. We find that (almost) all the errors
happen in safe code. A large portion of them can be
attributed to mistakes made when using Rust’s libraries
(Result and Option) to handle runtime errors. Moreover,
the Rust runtime detects overflow when performing various
arithmetic operations and trigger panics accordingly. This
functionality behaves differently on different numeric types
and different program building modes. Without enough
caution, it is quite easy to misjudge the runtime’s behavior,
causing unexpected panics.

Regarding all the three aspects mentioned above, we pro-
vide insightful suggestions to future Rust programmers and
language designers. Most of these suggestions can be directly
acted on. To illustrate, based on our summary of common
buggy code patterns and pitfalls, we offer recommendations
on good programming practices and concrete suggestions on
the design of future Rust bug detectors1 and programming
tools. We firmly believe that programmers, researchers, and
language designers can utilize our study results and the
concrete, actionable suggestions we propose to improve Rust
software development, including but not limited to better
programming practices, better bug detection tools, and better
language designs [21], [22], [23], [24], [25], [26], [27], [28].

Using the results from our empirical study, we further
conduct Rust bug detection by developing five static detec-
tors. These detectors specifically target use-after-free bugs,
double-lock bugs, conflicting-ordering deadlocks, atomicity
violations, and code sites that can trigger runtime panics. In
contrast to linters that analyze program source code [29], our
detectors conduct ownership- and lifetime-related analyses
on Rust’s mid-level intermediate representation (MIR). They
pinpoint code snippets exhibiting the buggy patterns iden-
tified in our empirical study. Programmers can enhance the
safety of their programs by addressing the reported memory

1. We use detectors and checkers exchangeably in this paper.

3

bugs or concurrency bugs. Additionally, they can inspect the
context of the identified panic sites and modify their pro-
grams to create panic-free versions for improved reliability.
In addition to all our studied Rust applications and libraries,
we also apply our detectors to 12 additionally selected Rust
programs. In total, these detectors discover 96 previously
unknown bugs in real Rust applications, with only seven
false positives reported. We have notified the programmers
about all the detected bugs. So far, programmers have fixed
45 bugs based on our reporting and confirmed another 41
bugs as real bugs. Comparing the current state-of-the-art Rust
bug detection technique [30], our detectors outperform in
terms of detecting a higher number of bugs, while producing
fewer false positives. The effectiveness and accuracy of our
detectors validate the value of our empirical study.

Overall, this paper makes the following contributions.
• A comprehensive study on 70 real Rust memory-safety

issues, 100 concurrency bugs, and 110 panic issues.
• Ten insights and five suggestions that can help Rust

programmers and the future development of Rust.
• Five novel Rust bug detectors and 96 detected bugs in

popular Rust programs.
This article builds upon and enhances a previously

published conference paper [31]. Specifically, we study 110
panic issues in real-world Rust programs. We inspect the
issues’ root causes and fix strategies. We redesign the two bug
detectors in the previous paper. Notably, we have success-
fully eliminated the false positives reported by the use-after-
free detector, and significantly enhanced the effectiveness
of the double-lock detector (as shown by the number of
detected bugs in the same set of applications). Additionally,
we design and implement three new detectors to cover two
types of concurrency bugs and panic sites. Furthermore,
we perform thorough experiments to evaluate the detectors
by running them on both the studied applications and 12
additionally selected programs, and comparing our detectors
with the state-of-the-art Rust bug detection technique called
Rudra [30]. Finally, we make a large number of changes to
improve the article’s presentation and discuss recent research
advancements in the related areas.

We have released our study results, source code of our
bug detectors, and detailed experimental results, all of which
can be found at https://github.com/BurtonQin/lockbud.

2 BACKGROUND AND RELATED WORK

This section provides some background of Rust, encompass-
ing its history, safety (and unsafe) mechanisms, supported
runtime errors, and associated error handling methods.

2.1 Language Overview and History

Rust is a type-safe language that prioritizes both efficiency
and safety. It was designed for low-level software develop-
ment where programmers seek low-level control of resources
(so that programs run efficiently) but want to be type-safe
and memory-safe. Rust defines a set of strict safety rules and
uses the compiler to check these rules to statically detect and
prevent numerous potential safety issues. At runtime, Rust
behaves similarly to C and can achieve a performance level
that is comparable to it.

1 #[derive(Debug)]
2 struct Test {v: Vec<i32>}
3 fn f0(_t: Test) {}
4 fn f1() {
5 let t0 = Test{v: vec![0]};
6 f0(t0);
7 // println!("{:?}", t0);
8 if true {
9 let t1 = Test{v: vec![1]};

10 }
11 // println!("{:?}", t1);
12 }

13 fn f2() {
14 let mut t2 = Test{v: 2};
15 let r1 = &t2;
16 let mut r2 = &mut t2;
17 r2.v = 3;
18 // println!("{:?}", r1);
19 }

(a) ownership & lifetime (b) borrow

Fig. 3: Sample code to illustrate Rust’s safety rules.

Rust has consistently been ranked as the most beloved
programming language since 2016, based on Stack Overflow
surveys [6], [7], [8], [32], [33], [34]. Additionally, it gained
recognition as the fifth fastest-growing language on GitHub
in 2018 [35]. Because of its safety and performance benefits,
Rust’s adoption in systems software has increased rapidly
in recent years [9], [12], [13], [36], [37], [38], [39]. Promi-
nent examples include Microsoft actively exploring Rust
as an alternative to C/C++ because of its memory-safety
features [40], [41], Amazon extensively utilizing Rust in AWS
for implementing performance-sensitive components [42],
and Google implementing low-level Android components in
Rust [43].

Rust was first released in 2012 and has now reached
version 1.68.0. Figure 1 shows the progression of Rust’s
feature changes and lines of code (LOC) over its history. Rust
went through heavy changes in the first four years since its
release, and it has been stable since Jan 2016 (v1.6.0). Having
maintained stability for over six years, we consider Rust
to be sufficiently mature for empirical studies such as ours.
Figure 2 shows when the analyzed bugs were resolved. Out
of the 280 bugs, 244 of them were fixed after 2016. Therefore,
we believe our study results reflect the issues observed in
stable Rust versions.

2.2 Safety Mechanisms

The goal of Rust’s safety mechanism is to prevent memory
and thread safety issues that have plagued C programs. Its
design centers around the notion of ownership. At its core,
Rust enforces a strict and restrictive rule of ownership: each
value has one and only one owner variable, and when the
owner’s lifetime ends, the value will be dropped (freed). The
lifetime of a variable is the scope where it is valid, i.e., from
its creation to the end of the function it is in or to the end
of matching parentheses (e.g., the lifetime of t1 in Figure 3
spans from line 9 to line 10). This strict ownership rule
eliminates memory errors like use-after-free and double-
free, since the Rust compiler can statically detect and reject
the use of a value when its owner goes out of scope (e.g.,
uncommenting line 11 in Figure 3 will raise a compile error as
in C/C++). This rule also eliminates synchronization errors
like race conditions, since only one thread can own a value
at a time.

Under Rust’s basic ownership rule, a value has one
exclusive owner. Rust extends this basic rule with a set
of features to support more programming flexibility while
still ensuring memory- and thread-safety. These features (as
explained below) relax the restriction of having only one

https://github.com/BurtonQin/lockbud
https://github.com/BurtonQin/lockbud

4

1 struct TestCell { value: i32, }
2 unsafe impl Sync for TestCell{}
3 impl TestCell {
4 fn set(&self, i: i32) {
5 let p = &self.value as * const i32 as * mut i32;
6 unsafe{*p = i};
7 }
8 }

Fig. 4: A bad practice for using (interior) unsafe.

owner for the lifetime of a value but still prohibit having
aliasing and mutation at the same time, and Rust statically
checks these extended rules at compile time.

Ownership move. The ownership of a value can be moved
from one scope to another (e.g., from a caller to a callee, from
one thread to another thread) or from one owner variable to
a different one. The Rust compiler statically guarantees that
an owner variable cannot be accessed after its ownership is
moved. As a result, a caller cannot access a value anymore if
the value is dropped in the callee function, and a shared value
can only be owned by one thread at any time. For example,
if line 7 in Figure 3 is uncommented, the Rust compiler will
report an error, since the ownership of t0 has already been
moved to function f0() at line 6. The compiler prevents a
use-after-free, since t0 and the heap buffer associated with
its Vec field are dropped inside f0(). Attempting to print
t0 at line 11 would also access the dropped heap buffer 2.

Ownership borrowing. A value’s ownership can also be
borrowed temporarily to another variable for the lifetime of
this variable without moving the ownership. Borrowing is
achieved by passing the value by reference to the borrower
variable. Without using particular libraries, Rust does not
allow borrowing ownership across threads, since a value’s
lifetime cannot be statically inferred across threads and there
is no way the Rust compiler can guarantee that all usages of
a value are covered by its lifetime.

Mutable and Shared references. Rust offers two types of
references. It allows multiple shared read-only references,
i.e., immutable references permitting read-only aliasing.
Additionally, a value’s reference can also be mutable, enabling
write access to the value. However, there can only be one mu-
table reference and no immutable references simultaneously.
Once a value’s ownership is borrowed through a mutable
reference, the temporary owner gains exclusive write access
to the value. In Figure 3, an immutable reference (r1) and
a mutable reference (r2) are created at line 15 and line 16,
respectively. The Rust compiler does not allow line 18, since
it will make the lifetime of r1 end after line 18, making r1
and r2 co-exist at line 16 and line 17.

2.3 Unsafe and Interior Unsafe

Rust’s safety rules are strict and its static compiler checking
for the rules is conservative. Developers (especially low-level
software developers) often need more flexibility in writing
their code, and some desire to manage safety by themselves.
Rust allows programs to bypass its safety checking with the
unsafe feature, denoted by the label unsafe. A function can

2. The heap memory associated with the Vec field of t0 is not copied
during the execution, since struct Test does not derive the Copy trait.

be marked as unsafe; a piece of code can be marked as
unsafe; and a trait can be marked as unsafe3.

Code regions marked with unsafe will bypass Rust’s
compiler checks and be able to perform five types of
functionalities: dereferencing and manipulating raw pointers,
accessing and modifying mutable static variables (i.e., global
variables), calling unsafe functions, implementing unsafe
traits, and accessing union fields. As shown by Figure 4,
TestCell implements the unsafe Sync trait at line 2, so
that a TestCell object can be shared between two threads
within safe code after being declared with Arc. The pointer
operation at line 6 is in an unsafe code region.

Rust allows a function to have unsafe code only internally;
such a function can be called by safe code and thus is
considered “safe” externally. We call this pattern interior
unsafe (e.g., function set() in Figure 4). Many APIs provided
by the Rust standard library are interior-unsafe functions,
such as Arc, Rc, Cell, RefCell, Mutex, and RwLock.

The design rationale of interior unsafe code is to have
the flexibility and low-level management of unsafe code
but to encapsulate the unsafe code in a carefully-controlled
interface, or at least that is the intention of the interior-unsafe
design. For example, Rust uses interior-unsafe functions
to allow the combination of aliasing and mutation (i.e.,
bypassing Rust’s core safety rules) in a controlled way: the
internal unsafe code can mutate values using multiple aliases,
but these mutations are encapsulated in a small number of
immutable APIs that can be called in safe code and pass
Rust’s safety checks. Rust calls this feature interior mutability.

Programmers must exercise sufficient caution when using
interior mutability functions in multi-threaded contexts to
avoid introducing concurrency bugs. Figure 4 illustrates a
bad practice. In the example, the set() function borrows
its input self immutably, but it modifies the value field
of self through the pointer p (an alias) at line 6. Since
TestCell implements the Sync trait, a TestCell object
can be shared across threads after being declared with
Arc. Additionally, as set() borrows self immutably, the
Rust compiler does not prevent concurrent calls to set(),
potentially leading to data races at line 6. As we will observe
later, many concurrency bugs stem from a similar cause.

2.4 Error and Error Handling
Rust distinguishes between two types of runtime errors:
unrecoverable errors and recoverable errors. An unrecover-
able error results in the termination of program execution,
while a recoverable error allows the program to take suitable
measures to handle the error and proceed with its execution.

Rust programmers can use the panic! macro to trigger
unrecoverable errors4 for cases that cannot be reasonably han-
dled. When invoked, this macro generates an error message,
cleans up the stack (e.g., dropping live objects on the stack),
and halts the program’s execution. The Rust standard library
commonly invokes panic!, when library users conduct
dangerous or insecure actions, such as accessing an array
with an out-of-bounds index. Additionally, the Rust compiler
automatically injects sanitizing code for certain mathematical

3. Rust traits are similar to interfaces in traditional languages like Java.
4. We will use unrecoverable errors and panics interchangeably in this

paper.

5

1 fn take_input() -> Result<char, Error> {
2 let input = user_input();
3 match input {
4 ’a’..=’z’ => Ok(input),
5 ’A’..=’Z’ => Err(CapitalLetterError),
6 _ => Err(InvalidLetterError),
7 }
8 }
9

10 fn main() {
11 match take_input() {
12 Ok(input) => println!("Valid Letter: {}", input),
13 Err(CapitalLetterError) => println!("Capital Letter!"),
14 Err(InvalidLetterError) => println!("Invalid Letter!"),
15 };
16 }

Fig. 5: Sample code for a recoverable error.

operations (especially in the debug build mode), which
triggers panics upon detecting arithmetic errors such as
division by zero or integer overflow.

Rust offers two enum types, Result and Option, for
callee functions to communicate recoverable errors to their
callers. When a function returns a Result object, it can
have one of two possible values. The first value is Ok(T),
where T is a generic type and is instantiated as the return
type required by the function’s functionality, indicating
that the function executes successfully. On the other hand,
the Result can also be Err(E), denoting the function
encounters an error and requires its caller to handle the
error, since the caller may have more context information.
Similarly, an Option object can be Some(T) or None for a
successful or an unsuccessful function execution, respectively.
Rust programmers can use the match or if statements
to check the value of a Result or an Option object and
take proper actions accordingly. For example, in Figure 5,
function take_input() takes a character from the pro-
gram user at line 2. The function only expects a lowercase
letter, and thus, if the character falls within the range of
‘a‘ to ‘z‘, the function returns Ok(input) at line 4. In
case the user inputs a capital letter, the function returns
Err(CapitalLetterError) at line 5. For all other cases, it
returns Err(InvalidLetterError) at line 6. The calling
function (function main()) leverages a match statement
(lines 11–15) to process the return of take_input() and
outputs corresponding messages.

Rust offers convenient shortcuts for frequently used
programming patterns when working with Result or
Option objects. For instance, if a programmer is cer-
tain that a Result must be Ok(T), the programmer
can call Result.unwrap() to directly access the value
inside Ok(T). However, it is important to note that
Result.unwrap() panics, if the programmer’s assumption
is incorrect and the Result is actually Err(E). In Section 6,
we will see that a lot of unexpected panics occur due
to unwrapping Result or Option objects directly when
programmers mistakenly assume they hold valid values.

3 STUDY METHODOLOGY

Although there are books, blogs, and theoretical publications
that discuss Rust’s design philosophy, benefits, and unique
features, it is unclear how real-world Rust programmers use
Rust and what pitfalls they make. An empirical study on
real-world Rust bugs like ours can also reveal what mistakes

(bugs) real programmers make and how they fix them. Some
of these mistakes could be previously unknown. Even if they
are, we can demonstrate through real data how often they
happen and dig into deeper reasons why programmers make
mistakes in that way. Our study reflects all the above values
of empirical studies.

To perform an empirical study, we spent numerous
manual efforts inspecting and understanding real Rust code.
These efforts result in this paper, which we hope will fuel
future research and practices to improve Rust programming
and in turn save future Rust programmers’ time. Before
presenting our study results, this section first outlines our
studied applications and our study methodology.

Studied Rust software and libraries. Our criteria of select-
ing what Rust software to study include open source, long
code history, popular software, and active maintenance. We
also aim to cover a wide range of software types (from user-
level applications and libraries to OSes). Based on these
criteria, we selected five software systems and five libraries
for our study (Table 1).

Servo [9] is a browser engine developed by Mozilla. Servo
has been developed side by side with Rust and has the
longest history among the applications we studied. TiKV [39]
is a key-value store that supports both single key-value-pair
and transactional key-value accesses. Parity Ethereum [44]
is a fast, secure blockchain client written in Rust (we call it
Ethereum for brevity in the rest of the paper). Redox [13] is an
open-source secure OS that adopts microkernel architecture
but exposes UNIX-like interface. Tock [45] is a Rust-based
embedded OS. Tock leverages Rust’s compile-time memory-
safety checking to isolate its OS modules.

Apart from the above five applications, we studied five
widely-used Rust libraries. They include 1) Rand [46], a
library for random number generation, 2) Crossbeam [47], a
framework for building lock-free concurrent data structures,
3) Threadpool [48], Rust’s implementation of thread pool,
4) Rayon [49], a library for parallel computing, and 5)
Lazy static [50], a library for defining lazily evaluated static
variables.

Collecting and studying bugs. To collect bugs, we analyzed
GitHub commit logs from the applications in Table 1. We first
filtered the commit logs using a set of bug-related keywords,
e.g., “use-after-free” for memory bugs, “deadlock” for con-
currency bugs, “overflow” for panics. These keywords either
cover important issues in the research community [51], [52],
[53] or are used in previous works to collect bugs [20], [54],
[55], [56]. We then manually inspected filtered logs to identify
bugs. We also analyzed all Rust-related vulnerabilities prior
to Jun 2019 in two online vulnerability databases, CVE [18]
and RustSec [19].

The scope of panic issues overlaps with that of memory
bugs and concurrency bugs. For instance, a runtime panic
can be triggered by an out-of-bounds memory access through
a Vec![T], and a panic may result from two threads holding
mutable references to the same RefCell at the same time.
To distinguish a panic issue from a memory bug, we assess
whether an invalid memory access occurs earlier or if a
panic occurs earlier. If an invalid memory access occurs
first, we categorize the issue as a memory bug; otherwise,
we classify it as a panic issue. To separate a panic issue

6

TABLE 2: Memory Bugs Category. (Buffer: Buffer overflow;
Null: Null pointer dereferencing; Uninitialized: Reading uninitial-
ized memory; Invalid: Invalid free; UAF: Use after free. ?: numbers
in () are for bugs whose effects are in interior-unsafe functions.)

Category Wrong Access Lifetime Violation TotalBuffer Null Uninitialized Invalid UAF Double free
safe 0 0 0 0 1 0 1
unsafe ? 4 (1) 12 (4) 0 5 (3) 2 (2) 0 23 (10)
safe→ unsafe ? 17 (10) 0 0 1 11 (4) 2 (2) 31 (16)
unsafe→ safe 0 0 7 4 0 4 15

1 pub struct FILE {
2 buf: Vec<u8>,
3 }
4

5 pub unsafe fn _fdopen(...) {
6 let f = alloc(size_of::<FILE>()) as * mut FILE;
7 - *f = FILE{buf: vec![0u8; 100]};
8 + ptr::write(f, FILE{buf: vec![0u8; 100]});
9 }

Fig. 6: An invalid-free bug in Redox.

from a concurrency bug, we primarily examine whether a
bug is confined to a single thread. In total, we examined 70
memory bugs, 100 concurrency bugs, and 110 unexpected
panic issues.

We manually inspected and analyzed all available sources
for each bug, including its patch, bug report, and online
discussions. Each bug is examined by at least two people in
our team. We also reproduced a set of bugs to validate our
understanding.

Instead of selecting some of the study results (e.g., those
that are unexpected), we report all our study results and
findings. Doing so can truthfully reflect the actual status of
how programmers in the real world use Rust. During our
bug study, we identified common mistakes made by different
developers in different projects. We believe similar mistakes
can be made by other developers in many other Rust projects.
Reporting all found errors (including known errors) can help
developers avoid similar errors in the future and motivate
the development of related detection techniques.

4 MEMORY SAFETY ISSUES

Memory safety is a key design goal of Rust. Rust uses a
combination of static compiler checks and dynamic runtime
checks to ensure memory safety for its safe code. However,
it is not clear whether or not there are still memory-safety
issues in real Rust programs, especially when they commonly
include unsafe and interior-unsafe code. This section presents
our detailed analysis of 70 real-world Rust memory-safety
issues and their fixes.

4.1 Bug Analysis Results
It is important to understand both the cause and the effect
of memory-safety issues (bugs). We categorize our studied
bugs along two dimensions: how errors propagate and what
are the effects of the bugs. Table 2 summarizes the results in
the two dimensions introduced above.

For the first dimension, we analyze the error propagation
chain from a bug’s cause to its effect and consider how safety
semantics change during the propagation chain. Similar to

prior bug analysis methodologies [57], [58], we consider the
code where a bug’s patch is applied as its cause and the
code where the error symptom can be observed as its effect.
Based on whether cause and effect are in safe or unsafe code,
we categorize bugs into four groups: safe → safe (or simply,
safe), safe → unsafe, unsafe → safe, and unsafe → unsafe (or
simply, unsafe).

For the second dimension, we categorize bug effects into
wrong memory accesses (e.g., buffer overflow) and lifetime
violations (e.g., use after free).
Buffer overflow. 17 out of 21 bugs in this category follow
the same pattern: an error happens when computing buffer
size or index in safe code and an out-of-boundary memory
access happens later in unsafe code. For 11 bugs, the effect
is inside an interior unsafe function. Six interior unsafe
functions contain condition checks to avoid buffer overflow.
However, the checks do not work due to wrong checking
logic, inconsistent struct status, or integer overflow. For three
interior unsafe functions, their input parameters are used
directly or indirectly as an index to access a buffer, without
any boundary checks.
Null pointer dereferencing. Rust allows the assignment of a
pointer value to a raw pointer or comparison of a raw pointer
with a value in safe code, but it does not permit dereferencing
a raw pointer in safe code. Thus, all bugs in this category
are caused by dereferencing a null pointer in unsafe code.
In four of them, null pointer dereferencing happens in an
interior unsafe function. These interior unsafe functions do
not perform proper checking before the dereferencing.

In addition to raw pointers, Rust also supports references
and standard library Box, each type with usage scenarios
similar to pointers. However, the Rust compiler does not
permit variables of these types to be NULL, eliminating the
possibility of null pointer dereferencing on these types. In sit-
uations where a Box variable might be invalid, programmers
can employ an Option object, with the Box variable serving
as the internal value of Some(T) and None indicating that
the Box variable is invalid.
Reading uninitialized memory. All the seven bugs in this cat-
egory are unsafe → safe. Four of them use unsafe code to
create an uninitialized buffer and later read it using safe code.
The rest initialize buffers incorrectly, e.g., using memcpy with
wrong input parameters.
Invalid free. Out of the ten invalid-free bugs, five share the
same (unsafe) code pattern. Figure 6 shows one such example.
The variable f is a pointer pointing to an uninitialized
memory buffer with the same size as struct FILE (line 6).
Assigning a new FILE struct to *f at line 7 ends the lifetime
of the previous struct f points to, causing the previous struct
to be dropped by Rust. All the allocated memory with the
previous struct will be freed, (e.g., memory in buf at line 2).
However, since the previous struct contains an uninitialized
memory buffer, freeing its heap memory is invalid. Note
that such behavior is unique to Rust and does not happen in
traditional languages (e.g., *f=buf in C/C++ does not cause
the object pointed by f to be freed).
Use after free. 11 out of 14 use-after-free bugs happen because
an object is dropped implicitly in safe code (when its lifetime
ends), but a pointer to the object or to a field of the object still
exists and is later dereferenced in unsafe code. Figure 7 shows

7

1 pub fn sign(data: Option<&[u8]>) {
2 - let p = match data {
3 - Some(data) => BioSlice::new(data).as_ptr(),
4 - None => ptr::null_mut(),
5 - };
6 + let bio = match data {
7 + Some(data) => Some(BioSlice::new(data)),
8 + None => None,
9 + };

10 + let p = bio.map_or(ptr::null_mut(),|p| p.as_ptr());
11 unsafe {
12 let cms = cvt_p(CMS_sign(p));
13 }
14 }

Fig. 7: A use-after-free bug in RustSec.

an example. When the input data is valid, a BioSlice
object is created at line 3 and its address is assigned to
a pointer p at line 2. p is used to call an unsafe function
CMS_sign() at line 12 and it is dereferenced inside that
function. However, the lifetime of the BioSlice object ends
at line 5, where its implicit owner variable’s valid scope
concludes, leading to the object being dropped there. The use
of p is thus after the object has been freed. The patch resolves
this issues by moving the BioSlice object to bio at line
6, and thus extends the object’s lifetime to the end of the
function, encompassing the call of function CMS_sign() at
line 12. Both this bug and the bug in Figure 6 are caused by
wrong understanding of object lifetime. We have identified
misunderstanding of lifetime being the main reason for most
use-after-free and many other types of memory-safety bugs.

There is one use-after-free bug whose cause and effect
are both in safe code. This bug occurred with an early Rust
version (v0.3) and the buggy code pattern is not allowed
by the Rust compiler now. The last two bugs happen in
a self-implemented vector. Developers explicitly drop the
underlying memory space in unsafe code due to some error
in condition checking. Later accesses to the vector elements
in (interior) unsafe code trigger a use-after-free error.
Double free. There are six double-free bugs. Other than two
bugs that are safe → unsafe and similar to traditional double-
free bugs, the rest are all unsafe → safe and unique to Rust.
These buggy programs first conduct some unsafe memory
operations to create two owners of a value. When these
owners’ lifetime ends, their values will be dropped (twice),
causing double free. One such bug is caused by

t2 = ptr::read::<T>(&t1)
which is a unsafe function and reads the content of t1
and puts it into t2 without moving t1. If type T contains a
pointer field that points to some object, the object will have
two owners, t1 and t2. When t1 and t2 are dropped by
Rust implicitly when their lifetime ends, double free of the
object happens. A safer way is to move the ownership from
t1 to t2 using t2 = t1. These ownership rules are unique
to Rust and programmers need to be careful when writing
similar code.
Insight 1: Rust’s safety mechanisms (in Rust’s stable versions)
are very effective in preventing memory bugs. All memory-safety
issues involve unsafe code (although many of them also involve
safe code).
Suggestion 1: Future memory bug detectors can ignore safe code
that is unrelated to unsafe code to reduce false positives and to
improve execution efficiency.

Interior unsafe functions conceal their internal unsafe
code beneath safe APIs. Consequently, meticulously crafted
interior unsafe functions should be regarded as safe func-
tions. However, self-implemented interior unsafe functions
demand careful scrutiny and testing. For example, out of
the 26 memory bugs whose effects manifest in an interior-
unsafe function, the interior unsafe function is implemented
by the project programmers themselves for 25 bugs, with the
remaining one originating from the standard library [59].

4.2 Fixing Strategies

We categorize the fixing strategies of our collected memory-
safety bugs into four categories.
Conditionally skip code. 30 bugs were fixed by capturing the
conditions that lead to dangerous operations and skipping
the dangerous operations under these conditions. For exam-
ple, when the offset into a buffer is outside its boundary,
buffer accesses are skipped. 25 of these bugs were fixed by
skipping unsafe code, four were fixed by skipping interior
unsafe code, and one skipped safe code.
Adjust lifetime. 22 bugs were fixed by changing the lifetime of
an object to avoid it being dropped improperly. These include
extending the object’s lifetime to fix use-after-free (e.g., the fix
of Figure 7), changing the object’s lifetime to be bounded to
a single owner to fix double-free, and avoiding the lifetime
termination of an object when it contains uninitialized
memory to fix invalid free (e.g., the fix of Figure 6).
Change unsafe operands. Nine bugs were fixed by modifying
operands of unsafe operations, such as providing the right
input when using memcpy to initialize a buffer and changing
the length and capacity into a correct order when calling
Vec::from_raw_parts().
Other. The remaining nine bugs used various fixing strategies
outside the above three categories. For example, one bug was
fixed by correctly zero-filling a created buffer. Another bug
was fixed by changing memory layout.
Insight 2: More than half of memory-safety bugs were fixed by
changing or conditionally skipping unsafe code, but only a few
were fixed by completely removing unsafe code, suggesting that
unsafe code is unavoidable in many cases.

Based on this insight, we believe that it is promising to
apply existing techniques [60], [61] that synthesize conditions
for dangerous operations to fix Rust memory bugs.

5 THREAD SAFETY ISSUES

Rust provides unique thread-safety mechanisms to help pre-
vent concurrency bugs, and as Rust language designers put
it, to achieve “fearless concurrency” [62]. However, we have
found a fair amount of concurrency bugs in Rust programs.
Similar to a recent work’s taxonomy of concurrency bugs [20],
we divide our 100 collected concurrency bugs into blocking
bugs (e.g., deadlocks) and non-blocking bugs (e.g., data races).

This section presents our analysis on the root causes
and fixing strategies of our collected blocking and non-
blocking bugs, with a particular emphasis on how Rust’s
ownership and lifetime mechanisms and its unsafe usages
impact concurrent programming.

8

TABLE 3: Types of Synchronization in Blocking Bugs.

Software Mutex&Rwlock Condvar Channel Once Other
Servo 6 0 5 0 2
Tock 0 0 0 0 0
Ethereum 27 6 0 0 1
TiKV 3 1 0 0 0
Redox 2 0 0 0 0
libraries 0 3 1 1 1
Total 38 10 6 1 4

5.1 Blocking Bugs

Blocking bugs manifest when one or more threads conduct
operations that wait for resources (blocking operations), but
these resources are never available. In total, we studied 59
blocking bugs. All of them are caused by using interior
unsafe functions in safe code. Among them, 25 are due to
misuse of the standard library, and the remaining 34 are due
to misuse of the third-party library.

Bug Analysis. We study blocking bugs by examining what
blocking operations programmers use in their buggy code
and how the blocking conditions happen. Table 3 summarizes
the number of blocking bugs that are caused by different
blocking operations. 55 out of 59 blocking bugs are caused
by operations of synchronization primitives, like Mutex
and Condvar. All these synchronization operations have
safe APIs, but their implementation heavily uses interior-
unsafe code, since they are primarily implemented by reusing
existing libraries like pthread. The other four bugs are not
caused by primitives’ operations (one blocked at an API call
only on Windows platform, two blocked at a busy loop, and
one blocked at join() of threads).
Mutex and RwLock. Different from traditional multi-
threaded programming languages, the locking mechanism
in Rust is designed to protect data accesses, instead of code
fragments [63]. To allow multiple threads to have write
accesses to a shared variable in a safe way, Rust developers
can declare the variable with both Arc and Mutex. The
lock() function returns a LockGuard object with a refer-
ence to the shared variable and locks it. The Rust compiler
verifies that all accesses to the shared variable are conducted
with the lock being held, guaranteeing mutual exclusion.
A lock is automatically released when the lifetime of the
returned LockGuard ends (the Rust compiler implicitly calls
unlock() when the lifetime ends).

Failing to acquire lock (for Mutex) or read/write (for
RwLock) results in thread blocking for 38 bugs, with 30 of
them caused by double locking, seven caused by acquiring
locks in conflicting orders, and one caused by forgetting to
unlock when using a self-implemented mutex. Even though
problems like double locking and conflicting lock orders are
common in traditional languages too, Rust’s complex lifetime
rules together with its implicit unlock mechanism make it
harder for programmers to write blocking-bug-free code.

Figure 8 shows a double-lock bug. The variable client
is an Inner object protected by an RwLock. At line 3, its
read lock is acquired and its m field is used as input to call
function connect(). If connect() returns Ok, the write
lock is acquired at line 7 and the inner object is modified
at line 8. The write lock at line 7 will cause a double lock,
since the lifetime of the temporary lock guard object returned
by client.read() spans the whole match code block and

1 fn do_request() {
2 //client: Arc<RwLock<Inner>>
3 - match connect(client.read().unwrap().m) {
4 + let result = connect(client.read().unwrap().m);
5 + match result {
6 Ok(_) => {
7 let mut inner = client.write().unwrap();
8 inner.m = mbrs;
9 }

10 Err(_) => {}
11 };
12 }

Fig. 8: A double-lock bug in TiKV.

the read lock is held until line 11. The patch is to save to
the return of connect() to a local variable to release the
read lock at line 4, instead of using the return directly as the
condition of the match code block.

This bug demonstrates the unique difficulty in knowing
the boundaries of critical sections in Rust. Rust developers
need to have a good understanding of the lifetime of a lock
guard variable returned by lock(), read(), or write()
to know when unlock() will implicitly be called. But
Rust’s complex language features make it tricky to determine
lifetime scope. For example, in six double-lock bugs, the first
lock is in a match condition and the second lock is in the
corresponding match body (e.g., Figure 8). In another five
double-lock bugs, the first lock is in an if condition, and
the second lock is in the if block or the else block. The
unique nature of Rust’s locking mechanism to protect data
accesses makes the double-lock problem even more severe,
since mutex-protected data can only be accessed after calling
lock().

Condvar. In eight of the ten bugs related to Condvar, one
thread is blocked at wait() of a Condvar, while no other
threads invoke notify_one() or notify_all() of the
same Condvar. In the other two bugs, one thread is waiting
for a second thread to release a lock, while the second thread
is waiting for the first to invoke notify_all().

Channel. In Rust, a channel has unlimited buffer size by
default, and pulling data from an empty channel blocks a
thread until another thread sends data to the channel. There
are five bugs caused by blocking at receiving operations. In
one bug, one thread blocks at pulling data from a channel,
while no other threads can send data to the channel. For
another three bugs, two or more threads wait for data from
a channel but fail to send data other threads wait for. In the
last bug, one thread holds a lock while waiting for data from
a channel, while another thread blocks at lock acquisition
and cannot send its data.

Rust also supports channel with a bounded buffer size.
When the buffer of a channel is full, sending data to the
channel will block a thread. There is one bug that is caused
by a thread being blocked when sending to a full channel.

Once. Once is designed to ensure that a global variable is
only initialized once. The initialization code can be put into a
closure and used as the input parameter of the call_once()
method of a Once object. Even when multiple threads call
call_once() multiple times, only the first invocation is
executed. However, when the input closure of call_once()
recursively calls call_once() of the same Once object, a

9

TABLE 4: How threads communicate. (Global: global static
mutable variables; Sync: the Sync trait; O. H.: OS or hardware
resources.)

Software Unsafe/Interior-Unsafe Safe MSGGlobal Pointer Sync O. H. Atomic Mutex
Servo 1 7 1 0 0 7 2
Tock 0 0 0 2 0 0 0
Ethereum 0 0 0 0 1 2 1
TiKV 0 0 0 1 1 1 0
Redox 1 0 0 2 0 0 0
libraries 1 5 2 0 3 0 0
Total 3 12 3 5 5 10 3

deadlock will be triggered. We have one bug of this type.
Insight 3: Lacking good understanding in Rust’s lifetime rules is
a common cause for many blocking bugs.

Our findings of blocking bugs are unexpected and some-
times in contrast to the design intention of Rust. For example,
Rust’s automatic unlock is intended to help avoid data
races and lock-without-unlock bugs. However, we found
that it actually can cause bugs when programmers have
some misunderstanding of lifetime in their code.
Suggestion 2: Future IDEs should add plug-ins to highlight the
location of Rust’s implicit unlock, which could help Rust developers
avoid many blocking bugs.

Fixing Blocking Bugs. Most of the Rust blocking bugs we
collected (51/59) were fixed by adjusting synchronization
operations, including adding new operations, removing
unnecessary operations, and moving or changing existing
operations. One fixing strategy unique to Rust is adjusting
the lifetime of the returned variable of lock() (or read(),
write()) to change the location of the implicit unlock().
This strategy was used for the bug of Figure 8 and 20 other
bugs. Adjusting the lifetime of a variable is much harder than
moving an explicit unlock() as in traditional languages.

The other eight blocking bugs were not fixed by adjusting
synchronization mechanisms. For example, one bug was
fixed by changing a blocking system call into a non-blocking
one.

One strategy to avoid blocking bugs is to explicitly define
the boundary of a critical section. Rust allows explicit drop
of the return value of lock() (by calling mem::drop()).
We found 11 such usages in our studied applications. Among
them, nine cases perform explicit drop to avoid double lock
and one case is to avoid acquiring locks in conflicting orders.
Although effective, this method is not always convenient,
since programmers may want to use lock() functions
directly without saving their return values (e.g., the read
lock is used directly at line 3 in Figure 8).
Suggestion 3: Rust should add an explicit unlock API of Mutex,
since programmers may not save the return value of lock() in
a variable and explicitly dropping the return value is sometimes
inconvenient.

5.2 Non-Blocking Bugs
Non-blocking bugs are concurrency bugs where all threads
can finish their execution, but with undesired results. This
part presents our study on non-blocking bugs.

Rust supports both shared memory and message passing
as mechanisms to communicate across threads. Among
the 41 non-blocking bugs, three are caused by errors in

message passing (e.g., messages in an unexpected order
causing programs to misbehave). All the rest are caused
by failing to protect shared resources. Since there are only
three bugs related to message passing, we mainly focus
our study on non-blocking bugs caused by shared memory,
unless otherwise specified.

Data Sharing in Buggy Code. Errors during accessing
shared data are the root causes for most non-blocking bugs in
traditional programming languages [64], [65], [66], [67], [68],
[69]. Rust’s core safety rules forbid mutable aliasing, which
essentially disables mutable sharing across threads. For non-
blocking bugs like data races to happen, some data must
have been shared and modified. It is important to understand
how real buggy Rust programs share data across threads,
since differentiating shared variables from local variables can
help the development of various bug detection tools [70].
We analyzed how the 38 non-blocking bugs share data and
categorized them in Table 4.

Sharing with unsafe code. 23 non-blocking bugs share data
using unsafe code, out of which 19 use interior-unsafe
functions to share data. Without a detailed understanding
of the interior-unsafe functions and their internal unsafe
mechanisms, developers may not even be aware of the
shared-memory nature when they call these functions.

The most common way to share data is by passing a
raw pointer to a memory space (12 in our non-blocking
bugs). A thread can store the pointer in a local variable
and later dereference it or cast it to a reference. All raw
pointer operations are unsafe, although after (unsafe) casting,
accesses to the casted reference can be in safe code. Many
Rust applications are low-level software. We found the
second most common type of data sharing (5) to be accessing
OS system calls and hardware resources (through unsafe
code). For example, in one bug, multiple threads share the
return value of system call getmntent(), which is a pointer
to a structure describing a file system. The other two unsafe
data-sharing methods used in the remaining 6 bugs are
accessing static mutable variables which is only allowed in
unsafe code, and implementing the unsafe Sync trait for a
struct.

Sharing with safe code. A value can be shared across threads in
safe code5 if the Rust compiler can statically determine that
all threads’ accesses to it are within its lifetime and that there
can only be one writer at a time. Even though the sharing
of any single value in safe code follows Rust’s safety rules
(i.e., no combination of aliasing and mutability), bugs still
happen because of violations to programs’ semantics. 15 non-
blocking bugs share data with safe code, and we categorize
them in two dimensions. To guarantee mutual exclusion, five
of them use atomic variables as shared variables, and the
other ten bugs wrap shared data using Mutex (or RwLock).
To ensure lifetime covers all usages, nine bugs use Arc to
wrap shared data and the other six bugs use global variables
as shared variables.

Insight 4: There are patterns of how data is (improperly) shared

5. Using interior unsafe functions provided by standard libraries is
treated as writing safe code here, although those functions contain
unsafe code internally.

10

1 impl Engine for AuthorityRound {
2 fn generate_seal(&self) -> Seal {
3 - if self.proposed.load() { return Seal::None; }
4 - self.proposed.store(true);
5 - return Seal::Regular(...);
6 + if !self.proposed.compare_and_swap(false, true) {
7 + return Seal::Regular(...);
8 + }
9 + return Seal::None;

10 }
11 }

Fig. 9: A non-blocking bug in Ethereum.

and these patterns are useful when designing bug detection tools.

Bug Analysis. After a good understanding of how Rust pro-
grammers share data across threads, we further examine the
non-blocking bugs to see how programmers make mistakes.
Although there are many unique ways Rust programmers
share data, they still make traditional mistakes that cause
non-blocking bugs. These include data race [64], [65], [66],
atomicity violation [67], [68], [69], and order violation [57],
[71], [72], [73].

We examine how shared memory is synchronized for
all our studied non-blocking bugs. 17 of them do not
synchronize (protect) the shared memory accesses at all,
and the memory is shared using unsafe code. This result
shows that using unsafe code to bypass Rust compiler checks
can severely degrade thread safety of Rust programs. 21 of
them synchronize their shared memory accesses, but there
are issues in the synchronization. For example, expected
atomicity is not achieved or expected access order is violated.

Surprisingly, 25 of our studied non-blocking bugs happen
in safe code. This is in contrast to the common belief that safe
Rust code can mitigate many concurrency bugs and provide
“fearless concurrency” [62], [74].

Insight 5: How data is shared is not necessarily associated with
how non-blocking bugs happen, and the former can be in unsafe
code and the latter can be in safe code.

There are seven bugs involving Rust-unique libraries,
including two related to message passing. When multiple
threads request mutable references to a RefCell at the
same time, a runtime panic will be triggered. This is the
root cause of four bugs. The RefCell objects causing the
bugs are shared using the Sync trait for two of them and
using pointers for the other two. Rust provides a unique
strategy where a mutex is poisoned when a thread holding
the mutex panics. Another thread waiting for the mutex will
receive Err from lock(). The poisoning mechanism allows
panic information to be propagated across threads. One bug
is caused by failing to send out a logging message when
poisoning happens. The other two bugs are caused by panics
when misusing Arc or channel. Since these panic issues
happen when multiple threads interact with each other, we
consider them as concurrency bugs, while the panic issues
we will discuss in Section 6 are confined in one single thread.

Insight 6: Misusing Rust’s unique libraries is one major root
cause of non-blocking bugs, and all these bugs are captured by
runtime checks inside the libraries, demonstrating the effectiveness
of Rust’s runtime checks.

Interior Mutability. As explained in Section 2.3, interior
mutability is a pattern where a function internally mutates

1 fn follow_hyperlink(subject: &Element, href: DOMString){
2 let doc = document_from_node(subject);
3 - let url = base_url(&doc.url()).parse(&href).unwrap();
4 + let url = match base_url(&doc.url()).parse(&href) {
5 + Ok(url) => url,
6 + Err(_) => return,
7 + };
8 doc.window().load_url(url);
9 }

Fig. 10: A Panic issue in Servo.

values, but these values look immutable from outside the
function. Improper use of interior mutability can cause non-
blocking bugs (13 in total in our studied set).

Figure 9 shows one such example. AuthorityRound is a
struct that implements the Sync trait (thus an Authority-
Round object can be shared by multiple threads after de-
clared with Arc). The proposed field is an atomic boolean
variable, initialized as false. The intention of function
generate_seal() is to return a Seal object only once at a
time, and the programmers (improperly) used the proposed
field at lines 3 and 4 to achieve this goal. When two threads
call generate_seal() on the same object and both of them
finish executing line 3 before executing line 4, both threads
will get a Seal object as the function’s return value, violating
the program’s intended goal. The patch is to use an atomic
instruction at line 6 to replace lines 3 and 4.

In this buggy code, the generate_seal() function
modifies the immutably borrowed parameter &self by
changing the value of the proposed field. If the function’s
input parameter is set as &mut self (mutable borrow), the
Rust compiler would report an error when the invocation
of generate_seal() happens without holding a lock. In
other words, if programmers use mutable borrow, then
they would have avoided the bug with the help of the
Rust compiler. There are 12 more non-blocking bugs in our
collected bug set where the shared object self is immutably
borrowed by a struct function but is changed inside the
function. For six of them, the object (self) is shared safely.
The Rust compiler would have reported errors if these
borrow cases were changed to mutable.

Rust programmers should carefully design interfaces
(e.g., mutable borrow vs. immutable borrow) to avoid non-
blocking bugs. With proper interfaces, the Rust compiler can
enable more checks, which could report potential bugs.
Insight 7: The design of APIs can heavily impact the Rust
compiler’s capability of identifying bugs.
Suggestion 4: Internal mutual exclusion must be carefully
reviewed for interior mutability functions in structs implementing
the Sync trait.

Fixes of Non-Blocking Bugs. The fixing strategies of our
studied Rust bugs are similar to those in other programming
languages [20], [75]. 20 bugs were fixed by enforcing atomic
accesses to shared memory. Ten were fixed by enforcing or-
dering between two shared-memory accesses from different
threads. Five were fixed by avoiding (problematic) shared
memory accesses. One was fixed by making a local copy of
some shared memory. Finally, two were fixed by changing
application-specific logic.
Insight 8: Fixing strategies of Rust non-blocking (and blocking)
bugs are similar to traditional languages. Existing automated bug

11

TABLE 5: Panic Category. (Error: missing error handling,
Arithmetic: wrong arithmetic operations, Assertion: assertion
errors, and OOB: out-of-bounds accesses.)

Software Error Arithmetic Assertion OOB Others
Servo 16 4 3 4 2
Tock 1 1 0 0 0
Ethereum 16 17 6 2 0
TiKV 0 2 3 1 0
Redox 5 4 6 4 1
libraries 1 4 0 1 6
total 39 32 18 12 9

fixing techniques are likely to work on Rust too.
For example, cfix [76] and afix [77] patch order-violation

and atomicity-violation bugs. Based on Insight 8, we believe
that their basic algorithms can be applied to Rust, and they
only need some implementation changes to fit Rust.

6 UNEXPECTED PANIC ISSUES

The Rust runtime dynamically detects specific types of errors
and initiates panics to prevent further damage caused by
the errors. While panic issues may have fewer security
implications compared with memory bugs, they can abruptly
halt programs, resulting in reduced reliability. Additionally,
they can potentially be exploited to carry out denial-of-
service (DoS) attacks. Therefore, it is critical to comprehend
and resolve panic issues in Rust programs. This section
presents our study results of 110 programming errors that
lead to unexpected panics.

6.1 Bug Analysis Results
We begin by analyzing where the panic issues occur. Unsur-
prisingly, the majority of these issues (107 out of 110) are
in safe code. Although the remaining three are in unsafe
code, the same panic issues can happen in safe code. Rust
programmers must pay attention to possible panic issues
when writing safe code.

Next, we examine the root causes of the panic issues and
separate them into five categories. A detailed breakdown of
the categories is presented in Table 5.
Missing error handling. As we discussed in Section 2.4, Rust
provides Result and Option enums for callees to either
return values (Ok(T) or Some(T)) or notify their callers of
encountered execution errors (Err(E) or None). Addition-
ally, for improved programming convenience, Rust allows
programmers to assume that a callee function always exe-
cutes successfully and directly retrieve the actual return value
using unwrap() or expect()6 on the returned Result (or
Option) object. However, if this assumption is incorrect, the
unwrap() (or expect()) call triggers a panic. In total, 39
panic issues stem from this cause, with 17 resulting from
misuse of Option objects and 22 resulting from misuse
of Result objects. When considering how programmers
access the internal values, 27 issues are triggered by calling
unwrap(), while the remaining 12 are triggered when
invoking expect().

Figure 10 illustrates an example from Servo to exem-
plify this category. The programmer mistakenly assumed

6. The difference between expect() and unwrap() is that
expect() takes a string as its parameter and when it triggers a panic,
it uses the string as the panic message.

1 impl kernel::SysTick for SysTick {
2 fn set_timer(&self, us: u32) {
3 let tenms: u32 = self.tenms();
4 - let reload = tenms * us / 10000;
5 + let reload = tenms / (10000 / us);
6

7 self.regs.value.set(0);
8 self.regs.reload.set(reload);
9 }

10 }

Fig. 11: An arithmetic overflow example in Tock. (The patch
is simplified to ease the explanation.)

the parse() function call at line 3 would always return
Ok(Url), leading him to call unwrap() on the returned
Result object. However, it is possible for the parse()
function call to fail and return Err(ParseError) instead.
As a result, a panic is triggered.
Wrong arithmetic operations. The Rust runtime pinpoints er-
rors when conducting certain types of arithmetic operations
and triggers panics accordingly. In total, 32 panic issues
arise from computation errors, with 29 of them stemming
from overflow. Figure 11 shows one example. At line 4, the
programmer multiplies two u32 numbers (us and tenms)
and divides the result by 10000. However, the multiplication
can overflow and triggers a panic when the program is built
in the debug mode. It is important to note that the Rust
runtime behaves differently for various numeric types and
between the debug and release building modes. In the case of
Figure 11, no panic occurs if the program is built in the release
mode. Moreover, an overflow in float number computations
does not trigger any panic regardless of which building mode
is used.

For the remaining three issues, one is caused by dividing
by zero, and the other two are due to casting a value to a
type, while the value is larger than the maximum value of
that type.
Assertion errors. Sometimes, programmers may mark some
program execution points as unreachable by calling
panic!(), unimplemented!(), or unreachable!(), or
enforce some constraints on processed data by calling
assert!(). When these execution points are reached or
the constraints are violated, panics are triggered. In our
study, 18 panic issues are caused by this reason.
Out of bounds. For std composite types (e.g., Vec![T],
String) that implement the Index trait, the Rust runtime
raises panics when attempting to use an out-of-bounds index
to access elements in objects of these types. Among our
studied issues, 12 fall into this category.
Others. There are nine panic issues not in the above categories.
Among them, seven are caused by stack overflow when
triggering infinite recursive function calls, and the other two
are due to calling a library function with a wrong parameter.
Insight 9: Rust offers extensive capabilities for capturing runtime
errors and also enables programmers to express and handle possible
execution errors by themselves. However, incomplete estimation of
the program logic can result in the misuse of these functionalities,
causing unexpected panics.
Suggestion 5: Future techniques can examine program sites
that can trigger panics and investigate whether these sites can be
reached to identify possible bugs or verify whether a specific code

12

segment or the entire program is panic-free.

6.2 Fixing Strategies

We categorize the fixing strategies of our collected panic
issues into four categories.
Eliminate panic statements. The elimination of the statements
triggering panics were employed to fix 37 panic issues. For
example, in Figure 11, the panic issue was resolved by
replacing the multiplication operation causing the panic in
the dividend with a division operation in the divisor. Another
example is fixing a panic issue caused by executing an
unimplemented!() statement. It was patched by replacing
the unimplemented!() statement with code implementing
the desired functionality.
Conditionally skip code. Similar to how some memory bugs
were addressed in Section 4.2, modifying branch conditions
to selectively skip code sites triggering panics fixed 32 panic
issues.
Add error handling. The addition of proper error handling
code was utilized to resolve 26 panic issues caused by
calling unwrap() or expect() on a Result or Option
object. For example, the panic issue in Figure 10 was fixed
by introducing a match block to handle the two possible
values of the returned Result object. In this case, the
execution of function follow_hyperlink() terminates
earlier (by returning at line 6), when the Result object
is an Err(ParseError).
Propagate errors. The remaining 15 panic issues were fixed by
propagating the errors causing the panics to the caller func-
tions by returning Result or Option objects, as the caller
functions may possess additional contextual information to
effectively handle the errors.
Insight 10: There are common strategies in fixing Rust’s panic
issues, and some of them are unrelated to program semantics (e.g.,
propagating errors, eliminating panic statements), indicating the
research opportunities in automatically fixing programming errors
leading to unexpected panics.

7 STATIC BUG DETECTION

Our empirical bug study reveals that Rust’s compiler checks
do not adequately cover all types of bugs. We believe that
Rust bug detection tools should be developed and our study
findings can significantly contribute to these developments.
To demonstrate the value and potential of our study results,
we have created five static checkers to pinpoint one type of
memory bugs, three types of concurrency bugs, and potential
locations that can trigger runetime panics. These checkers
represent our initial efforts in combating Rust bugs. However,
we emphasize that bug detection for Rust should go beyond
our current work. We strongly encourage researchers and
practitioners to invest further in Rust bug detection based on
our exploration.

In this section, we begin by discussing the designs and
algorithms employed in our checkers. Subsequently, we
present the experimental results, which encompass the num-
ber of previously unknown bugs detected by our checkers,
our checkers’ bug coverage, the number of their reported
false positives, and their execution time.

7.1 Design and Algorithm

We construct all our static checking by analyzing Rust’s mid-
level intermediate representation (MIR) [78]. MIR provides
us with a wealth of information, including details about
types, def-use chains, and control flows. Furthermore, MIR
distinguishes between pointers and references, as well as be-
tween mutable and immutable references. Additionally, MIR
calls StorageLive and StorageDead on each variable to
mark the start and end of its lifetime, respectively. Below, we
describe how we build the six checkers using the information
provided by MIR one by one.

Use after free. As we discussed in Section 4.1, use-after-
free bugs primarily occur when a pointer is utilized to
access an object beyond the object’s lifetime scope. Different
from LLVM IR, MIR provides a clear distinction between
pointers and references, which allows us to concentrate our
detection analysis on pointer usages, since Rust’s safety
checks guarantee that all references are used within objects’
lifetime and cannot cause use-after-free bugs.

We begin our analysis by identifying all functions con-
taining pointer usages. We then conduct intra-procedural
analysis on each identified function. We implement a points-
to analysis to determine which object a pointer points to.
For a given object, we consider the instructions between its
StorageLive and StorageDead calls as its lifetime scope,
since these two calls mark where the object’s lifetime starts
and ends, respectively7. When the ownership of an object is
moved from variable A to variable B, MIR signals the end of
A’s lifetime (via a StorageDead call on A) and the start of
B’s lifetime (via a StorageLive call on B). We check each
move operation and merge lifetime scopes of objects involved
in a move-to relationship. If a dereference of a pointer can
be reached from the location where the object the pointer
points to terminates its lifetime, we report a use after free.
Moreover, if an object is dropped in a function, but a pointer
to that object escapes from the function (e.g., returned by the
function or saved to a global variable), we also report a use
after free.

Double lock. The high-level idea of detecting double locks
is straightforward: we inspect each critical section and check
whether the same lock is acquired again within that critical
section. However, one challenge we face is that MIR does
not provide locations where unlock() is called. Thus,
we must compute lifetime scopes of LockGuard variables
returned by locking operations to determine the boundaries
of critical sections. On the other hand, the move mechanism
simplifies the computation when a LockGuard is moved
to a callee, since the LockGuard must be dropped in the
callee. The critical section ends immediately after the call
site in the caller function, and we do not need to rely
on inter-procedural analysis to gain this conclusion. Those
distinctions set our detector apart from existing double-lock
detection techniques built for other languages [79], [80], since
those existing techniques can rely on where unlock() is
called to determine critical section boundaries.

To implement this in detail, we begin by analyzing the
input parameter and return value of each locking operation

7. A StorageDead call on an object usually follows a drop call on
the object, which frees the object.

13
TABLE 6: Benchmarks and Evaluation Results. (Under the “App Info” columns, LOC denotes lines of source code, and * denotes
not applicable. Under the “# of Bugs” columns, UAF denotes use after free, DL denotes double lock, CO denotes conflicting ordering
deadlock, AV denotes atomicity violation, xy denotes x bugs and y false positives, and - denotes both the bug number and the false
positive number are zero. Under the “Time” columns, Detection denotes the sum of the execution time of the five bug detectors, Building
denotes the building time of an application, Overhead denotes the division of the detection time over the building time, and all execution
time is measured in seconds.)

App Info # of Bugs Time

Software Stars Commits LOC UAF DL CO AV Total Panic Rudra Detection (s) Building (s) Overhead

Servo 19199 43945 320570 - 01 - 10 11 20682 05 71 1207 5.88%
Tock 2695 7986 117038 - - - - - 802 01 4 96 4.17%
Ethereum 6310 12109 128626 - 133 140 30 303 1052 - 70 963 7.27%
TiKV 8903 5591 237614 - - - - - 2477 02 329 3696 8.90%
Redox 12966 2434 59045 50 - - - 41 705 13 14 211 6.64%
libraries 4838 2784 26546 - - - 21 21 120 023 1 22 4.55%

Wasmer 8943 9528 75168 10 120 01 - 131 1957 03 27 267 10.11%
Substrate 3969 5084 247304 - 20 - - 20 1403 - 286 5813 4.92%
Solana 1313 13302 214405 - 90 80 10 180 3376 02 164 4231 3.88%
Lighthouse 955 3925 102936 - 90 - - 90 1707 - 139 941 14.77%
Grin 4770 2447 44779 - 10 20 10 40 454 - 16 204 7.84%
Winit 1657 2496 29169 - 10 - - 10 111 - 6 84 7.14%
Tokio 11213 2377 46834 - - - 11 11 309 01 5 65 7.69%
Firecracker 14675 2680 61863 - - - 10 10 402 - 6 58 10.34%
RCore 1559 1878 22013 - 50 30 - 80 178 - 5 64 7.81%
Serenity 1361 2070 30116 - - - - - 310 - 20 192 10.42%
Diem 15704 8188 258658 - - - 10 10 4604 - 98 1931 5.08%
Deno 73109 5264 56502 - - - - - 1525 01 55 620 8.87%

Total * * * 60 525 270 112 967 42174 141 1316 20665 6.37%

to determine which mutex the returned LockGuard belongs
to. To differentiate between different mutexes, we use the
declaration site as the identifier for each local or global
mutex variable, and the struct type along with the field
offset as the identifier for each struct-field mutex. Next,
we perform interprocedural Gen-Kill analysis to compute
live LockGuard variables for each basic block. If a basic
block contains a locking operation, then its Gen set contains
the LockGuard returned by the operation. If a basic block
moves a LockGuard from one variable to another, its Gen set
contains the LockGuard variable that takes the ownership,
while its Kill set contains the LockGuard variable from
which the ownership is transferred. If a basic block moves
a LockGuard to a callee function, its Gen set contains the
LockGuard. When a LockGuard is dropped (i.e., used as the
parameter to call function drop()), unlock() is implicitly
called on the corresponding mutex. In the case where a
basic block drops a LockGuard, its Kill set contains the
LockGuard. For all other scenarios, the Gen and Kill sets
are all empty. Finally, we revisit each locking operation and
check whether any live LockGuard shares the same mutex
as the locking operation.

Conflicting ordering deadlock. A conflicting ordering dead-
lock happens when multiple threads are stuck in a circular
wait, each waiting for locks held by the others. Theoretically,
a conflicting ordering deadlock can involve multiple mu-
texes. However, all the seven conflicting ordering deadlocks
studied in Section 5.1 involve only two mutexes. As a result,
we focus our detection efforts on bugs caused by interactions
between two mutexes. The high-level algorithm considers
there is a locking order from A to B when the analyzed
program acquires lock B while already holding lock A. The
algorithm identifies a conflicting ordering deadlock when
there are locking orders both from A to B and from B to A.

We implement the detector in a similar way as when

we detect double locks. Specifically, we track the lifetimes
of LockGuard variables to figure out when acquired locks
are released. We utilize the same method as the double lock
detector to distinguish between different mutexes. More-
over, we implement a Gen-Kill algorithm to compute live
LockGuard variables for each basic block. The different part
is that we check each locking operation and live LockGuard
at the basic block to compute locking orders and detect
conflicting ordering deadlocks after having all locking orders
of the program.

Atomicity violation. Atomicity violations occur when two
consecutive memory accesses to a shared variable are in-
terleaved by an access from a different thread targeting the
same variable [68]. When developing the checker, our focus is
primarily on atomicity violations resulting from the misuse of
atomic instructions. These instructions enable programmers
to access shared variables without using unsafe code, and
bugs caused by mistakenly using atomic instructions are
more likely to be overlooked by programmers. Moreover, we
further narrow down our analysis to cases where the two
consecutive memory accesses are in the same function. This
strategy significantly simplifies our static analysis and also
reduces the likelihood of false positives, since interleaving
two accesses in separate functions is more likely to be
harmless compared with interleaving two accesses within
the same function. Although there are four bug patterns for
atomicity violations based on whether the memory accesses
are reads or writes [68], we specifically concentrate on
violations caused by a remote write interleaving a write
following a read, as guided by our bug study.

In our detailed implementation, we begin by identifying
functions that perform both atomic reads and writes on the
same shared variable. Next, for each identified function, we
examine if there exists an atomic write operation that is
control-dependent on the value read from a previous atomic

14

read of the same variable. If such a condition is met, we
report it as a bug.

Panic. We identify code sites that can trigger unexpected pan-
ics by detecting certain standard library function calls. These
include calling unwrap() or expect() on a Result or
Option object, as well as invoking three macros panic!(),
panic_fmt!(), and assert_failed!().

7.2 Evaluation
Our experiments seek to comprehend the effectiveness,
accuracy, and performance of our checkers. Specifically, we
will answer the following three research questions:
• RQ-1: Do our checkers identify previously unknown

bugs in real-world Rust programs?
• RQ-2: How accurate are the detection results of our

checkers?
• RQ-3: What is the analysis time required by our checkers

for a Rust program?

Benchmarks. We utilize our checkers on the most recent
versions of the ten Rust software programs discussed in
Section 3 (comprising five applications and five libraries) to
determine their capability in detecting previously unknown
bugs. Additionally, we choose another 12 applications to
evaluate whether our checkers are general enough to identify
bugs beyond our studied software. All our selected bench-
marks fulfill the following three conditions: 1) being popular
on GitHub and having many GitHub stars, 2) having a source
code size exceeding 10K lines (except some libraries), and 3)
being actively maintained by programmers. Table 6 provides
detailed information about the benchmarks.

Baseline technique. We compare our checkers with
Rudra [30] and MirChecker [24]. Rudra contains three static
checkers designed to identify two types of memory bugs and
one type of concurrency bugs, respectively. We apply all the
three Rudra checkers to our benchmarks and compare the
number of bugs they detect with our checkers. MirChecker,
like our checkers, is built on MIR analysis. However, it is
implemented using an outdated version of Rust, prevent-
ing us from running it on the latest benchmark versions.
To address this limitation, we downgrade the benchmark
programs to their most recent versions before December
29, 2020 (the date of MirChecker’s most recent commit).
Subsequently, we compare our checkers with MirChecker on
these downgraded benchmarks.

Platform. We conducted all of our experiments on an Ubuntu
18.04 machine equipped with an Intel(R) Core(TM) i7-8750H
CPU, 16GB RAM memory and a 1TB SSD.

7.2.1 Effectiveness

Overall results. As shown in Table 6, our detectors success-
fully identify a total of 96 previously unknown bugs. We
report all these bugs to the programmers. Up to this point,
the programmers have fixed 45 bugs based on our reporting
and have confirmed 41 extra bugs as real bugs. The large
number of detected bugs serves as a testament to the good
bug detection capability of our checkers.

Out of the 12 benchmarks that are additionally selected,
our checkers detect bugs in ten of them (from row Wasmer

1 unsafe fn fmt_time(...) -> *const c_char {
2 let time_str = format!(...);
3

4 - time_str[0..26].as_ptr() as _
5 + let ptr = time_str[0..26].as_ptr() as *const c_char;
6 + mem::forget(time_str);
7 + ptr
8 }

Fig. 12: A detected use-after-free bug in Wasmer.

to row Deno in Table 6), which demonstrates that the buggy
code patterns covered by our checkers are general enough and bugs
following in the patterns are prevalent in Rust programs.

Results of individual checkers. As shown by the last row
of Table 6, the double-lock detector identifies the highest
number of previously unknown bugs, closely followed by the
conflicting-ordering-deadlock detector. They detect 52 and 27
bugs, respectively. The large numbers of detected bugs serve
as substantial evidence that Rust programmers frequently
make mistakes in inferring the release point of a lock, thereby
affirming Insight 3 of our bug study (Section 5.1).

The atomicity-violation detector detects 11 bugs. Similar
to Figure 9, nine of the detected bugs are in interior mutability
functions, validating Insight 7 of our study (Section 5.2).

We find six use-after-free bugs, with one specific example
illustrated in Figure 12. In this case, the format! macro
creates a string called time_str at line 2. A pointer pointing
to time_str’s internal buffer is returned by the function.
However, time_str is dropped at the end of the function
(at the termination of time_str’s lifetime), resulting in the
freeing of its internal buffer. Consequently, any subsequent
use of the returned pointer will lead to a use-after-free bug.
The patch is to call mem::forget() at line 6 to prevent the
automatic deallocation of time_str.

Comparing with Rudra. We execute the Rudra checkers
on all benchmark projects. Although Rudra reports 42
suspicious code sites (19 reported by the Sync/Send variance
checker and 23 reported by the unsafe dataflow checker),
upon thorough examination of the results, we determine
that there is only one real bug. The bug is an invalid-
free bug. It occurs when the Rust compiler deallocates a
vector containing uninitialized memory objects after a user-
provided function panics. Our tools identify a significantly
higher number of bugs than Rudra for two main reasons.
First, our tools are designed based on an empirical study,
ensuring that the bugs they cover are more likely to occur
in real-world Rust programs. Second, the Rudra paper
authors scanned all registered Rust crates during their project,
resulting in the resolution of many bugs. In summary, our
tools cover distinct patterns of buggy code compared to
Rudra, and they effectively complement Rudra in Rust bug
detection.

Comparing with MirChecker. Out of the 22 downgraded
benchmarks, we successfully compiled ten of them with the
matched Rust compiler versions. However, for the remaining
12 benchmarks, at least one dependency is either broken or
no longer available. MirChecker, when applied to the ten
compiled benchmarks, reports seven potential memory bugs,
but upon further analysis, all of them are found to be false
positives. Additionally, MirChecker flags 327 panic issues,

15

including 40 due to assertion errors, 125 due to out-of-bounds
accesses, and 162 due to incorrect arithmetic operations.
Among them, MirChecker reports two caused by out-of-
bounds accesses as proved to occur, while reporting the other
325 as potential panic issues. In contrast, our checkers de-
tected 19 double-lock deadlocks, seven conflicting-ordering
deadlocks, and six atomicity violations. Moreover, our tools
identified 7259 code sites that have the potential to cause
assertion errors. In summary, our tools demonstrate a higher
capability in detecting bugs compared to MirChecker.

Identified panic sites. We identify 42174 code sites that
have the potential to trigger panics. While not all of these
sites necessarily represent real bugs, we strongly encourage
programmers to thoroughly inspect these sites, or employ
some directed fuzzing techniques [81], [82] to determine
whether these sites can really trigger unexpected panics.

7.2.2 Accuracy

Overall results. In total, our checkers report only seven false
positives across the 22 benchmark programs. The true-bug-
vs-false-positive rate is around 14:1. This signifies that our
checkers possess a high level of accuracy when analyzing Rust
programs.

The false positives are due to two reasons. First, the
double-lock detector reports five false positives, which are
a result of incorrect alias information used in determin-
ing which locking operations create LockGuard variables.
Second, the atomicity-violation detector reports two false
positives. The reason is that our checker only analyzes atomic
operations and it ignores other synchronization operations
that ensure the atomic execution of the identified read and
write instructions.

Comparing with Rudra. Upon analyzing the 22 benchmark
programs, Rudra checkers yield a total of 41 false positives.
These false positives can be attributed to two primary reasons.
First, Rudra’s Sync/Send variance checker generates 19
false alarms concerning self-implemented synchronization
primitives. Although the primitives violate the Sync/Send
rules checked by the checker, they have specific implementa-
tions that ensure the absence of concurrency bugs. Second,
programmers employ some mechanisms to prevent memory
bugs during panic situations. Unfortunately, Rudra’s unsafe
dataflow checker fails to identify these mechanisms and
mistakenly considers them as memory bugs, causing 22 false
positives. In comparison, our checkers exhibit significantly
higher accuracy than the state-of-the-art Rust bug detention
technique.

Comparing with MirChecker. MirChecker reports seven po-
tential memory bugs, all of which, upon further examination,
turn out to be false positives. These false positives are associ-
ated with the same logging function, which is implemented
in safe code and invoked by safe code. Consequently, there is
no use after free, as reported by MirChecker. The function has
multiple lifetime annotations on its arguments, which might
be the source of confusion for MirChecker. In contrast, our
checkers do not generate any false positives while detecting
memory bugs. It is crucial to underscore that MirChecker
raises a potential panic issue if it cannot definitively confirm
that a panic will not occur. Out of the 327 panic issues

reported by MirChecker, only two, resulting from out-of-
bounds accesses, are proven to occur. The remaining 325
panic issues are possible panic issues, aligning with those
identified by our checkers.

7.2.3 Performance
To measure the execution time, we conduct ten runs of
each checker on every benchmark program and record the
average execution time. Subsequently, we sum the execution
time of the five checkers for each program, as depicted in
the “Detection” column of Table 6. Roughly speaking, our
checkers require more time for analyzing larger benchmark
programs (programs with a greater number of lines of
code). Specifically, our checkers complete their analysis
within ten seconds for six programs, all of which have less
than 100K lines of code, except for Tock. Furthermore, our
checkers spend less than 100 seconds on additional eight
programs. For the remaining four programs, our checkers
need more than 100 seconds for their analysis. The program
that consumes the most time is TiKV, with our checkers
taking 329 seconds to analyze it.

As our checkers can function as plugins of the Rust
compiler, we further compare the execution time of our
checkers with the building time of the benchmark programs.
This evaluation aims to determine the overhead our checkers
would introduce if integrated into the building process. To
measure the building time, we pre-download all the required
crates and configure the number of cargo threads to be one.
As shown in Table 6, our checkers impose an overhead
of more than 10% for four benchmark programs. Notably,
Lighthouse experiences the largest overhead, with 14.7%
increase. For all the remaining 18 benchmark programs, our
checkers introduce an overhead of less than 10%. Moreover,
in the case of four benchmark programs, the overhead is
less than 5%. For instance, Solana encounters a mere 3.8%
overhead, which is the lowest overhead among all programs.
Overall, our checkers introduce small overhead, indicating
that they have a good chance to be integrated into the building
process.

8 RELATED WORK

8.1 Bug Detection in Rust
The Rust runtime detects and triggers a panic on certain types
of bugs, such as buffer overflow, division by zero and stack
overflow. Rust also provides more bug-detecting features
in its debug building mode, including detection of double
locks and integer overflow . Capturing a bug and reporting
a panic using the runtime can avoid the bug from causing a
more significant impact (e.g., being exploited), but the bug
can potentially be leveraged to conduct DoS attacks and still
needs to be fixed. In Section 6, we study real programming
errors that can cause unexpected panics.

Rust uses LLVM [83] as its backend. Many static and dy-
namic bug detection techniques [57], [58], [68], [84] designed
for C/C++ can also be applied to Rust. However, it is still
valuable to build Rust-specific detectors such as our tools in
Section 7, because Rust’s new language features and libraries
can cause new types of bugs.

Researchers have developed several bug detection tech-
niques for Rust. The static detectors can analyze the entire

16

Rust program, providing good code coverage, but they
tend to produce false positives. Rust-clippy [85] aims to
capture memory bugs that follow certain simple source-
code patterns. It only covers a limited number of buggy
patterns. FFIChecker detects memory bugs resulting from
errors in integrating Rust code with C/C++ using FFI [86].
MirChecker [24] computes numeric and symbolic informa-
tion and then applies constraint solving to detect assertion
errors and memory bugs due to using an owner variable
after its ownership is moved through unsafe code. Rudra [30]
statically bugs in three patterns.

Dynamic detectors reply on user-provided inputs that can
trigger bugs, but their detection results are generally more
precise than those of static detectors. Miri [87] is a dynamic
memory-bug detector that interprets and executes MIR.
Jung et al. proposed an alias model for Rust [88]. Based on this
model, they built a dynamic memory-bug detector that uses
a stack to dynamically track all valid references/pointers
to each memory location and reports potential undefined
behavior and memory bugs when references are not used in a
properly-nested manner. Liu et al. introduced a separation of
heap memory into safe objects accessed only by safe code and
unsafe objects potentially accessed by unsafe code. They then
dynamically detected memory bugs or prevented memory
corruption when an instruction that should access an unsafe
object accesses an safe object [89].

These existing Rust bug detection tools all have their own
limitations, and they are far from covering all Rust memory
bugs and concurrency bugs. An empirical study on Rust bugs
like this work is important. It can help future researchers
and practitioners to build more Rust-specific detectors. In
fact, we have built five bug detectors based on the findings
in our study, and those detectors reveal many previously
undiscovered bugs.

8.2 Formalizing and Proving Rust’s Correctness
Several previous works aim to formalize or prove the
correctness of Rust programs [14], [15], [16], [17], [90].
RustBelt [14] conducts the first safety proof for a subset
of Rust. Patina [90] proves the safety of Rust’s memory
management. Baranowski et al. extend the SMACK verifier
to work on Rust programs [15]. After formalizing Rust’s
type system in CLP, Rust programs can be generated by
solving a constraint satisfaction problem, and the generated
programs can then be used to detect bugs in the Rust
compiler [16]. K-Rust [17] compares the execution of a Rust
program in K-Framework environment with the execution
on a real machine to identify inconsistency between Rust’s
specification and the Rust compiler’s implementation.

In contrast to the aforementioned works, our research
aims to understand common mistakes made by real Rust
developers, and identifies these mistakes through static
analysis. It can improve the safety of Rust programs from a
practical perspective.

8.3 Empirical Studies
In the past, researchers have conducted various empirical
studies on different kinds of bugs in different programming
languages [54], [55], [91], [92], [93], [94], [95]. Our study
stands out as one of the early investigation into real-world

mistakes in Rust programs. Xu et al. analyzing all Rust
CVEs prior to 2021 to understand Rust’s effectiveness in
preventing memory bugs and common patterns of Rust
memory bugs [96]. Their study shares some common findings
as ours (e.g., Insight 1). However, our work goes beyond their
scope by not only examining Rust memory bugs but also
investigating concurrency bugs and unexpected panic issues
in Rust programs, thus revealing more significant insights.
In our previous paper, we inspected memory bugs and
concurrency bugs in Rust programs [31]. As panics can cause
unexpected halts during program execution, we expand
upon our previous research by inspecting programming
errors that lead to unexpected panics (Section 6).

There are a few empirical studies on Rust’s unsafe code
usage. One study counts the amount of unsafe code in
crates.io [97]. Another one analyzes several cases where
interior unsafe is not well encapsulated [98]. Sun et al. count
the number of Rust libraries that depend on external C/C++
libraries [99]. Evans et al. compute the portion of functions
that possibly execute unsafe code in real-world Rust libraries
and also conduct a survey to understand why developers use
unsafe code [100]. Our bug study reveals many issues caused
by Rust’s unsafe code and it complements those existing
studies.

9 CONCLUSION

As a programming language designed for safety, Rust
provides a suite of compiler checks to rule out memory-safety
and thread-safety issues. Facing the increasing adoption of
Rust in mission-critical systems like OSes and browsers, this
paper conducts a comprehensive, empirical study on memory
bugs, concurrency bugs, and unexpected panics in real-world
Rust programs. Many insights and suggestions are provided
in our study. To showcase the value of our study, we further
build five static detectors by leveraging the observations of
our study. These detectors pinpoint 96 previously unknown
bugs in real-world Rust programs. We expect our study to
deepen the understanding of real-world safety issues in Rust
and guide the programming and research tool design of Rust.

17

REFERENCES

[1] S. Klabnik and C. Nichols, “The Rust Programming Language,”
2018. [Online]. Available: https://doc.rust-lang.org/stable/book/
2018-edition/

[2] S. Shanker, “Safe Concurrency with Rust,” 2018.
[Online]. Available: http://squidarth.com/rc/rust/2018/06/
04/rust-concurrency.html

[3] T. R. Team, “Rust Empowering everyone to build reliable
and efficient software,” 2019. [Online]. Available: https:
//www.rust-lang.org/

[4] Y. W. Chua, “Appreciating Rust’s Memory Safety
Guarantees,” 2017. [Online]. Available: https://blog.gds-gov.
tech/appreciating-rust-memory-safety-438301fee097

[5] B. G. Team, “Rust versus C gcc fastest programs,” 2019.
[Online]. Available: https://benchmarksgame-team.pages.debian.
net/benchmarksgame/faster/rust.html

[6] S. Overflow, “Stack Overflow Developer Survey 2016,” 2016.
[Online]. Available: https://insights.stackoverflow.com/survey/
2016#technology-most-loved-dreaded-and-wanted

[7] S. Overflow, “Stack Overflow Developer Survey 2017,” 2017.
[Online]. Available: https://insights.stackoverflow.com/survey/
2017#most-loved-dreaded-and-wanted

[8] S. Overflow, “Stack Overflow Developer Survey 2018,” 2018.
[Online]. Available: https://insights.stackoverflow.com/survey/
2018/#most-loved-dreaded-and-wanted

[9] Servo, “The Servo Browser Engine,” 2019. [Online]. Available:
https://servo.org/

[10] Quantum, “Quantum,” 2019. [Online]. Available: https://wiki.
mozilla.org/Quantum

[11] Straits, “Stratis: Easy to use local storage management for Linux,”
2019. [Online]. Available: https://stratis-storage.github.io/

[12] Tock, “Tock Embedded Operating System,” 2019. [Online].
Available: https://www.tockos.org/

[13] Redox, “The Redox Operating System,” 2019. [Online]. Available:
https://www.redox-os.org/

[14] R. Jung, J.-H. Jourdan, R. Krebbers, and D. Dreyer, “Rustbelt:
Securing the foundations of the Rust programming language,”
in Proceedings of the 45th ACM SIGPLAN Symposium on
Principles of Programming Languages (POPL ’18), Los Angeles,
CA, January 2018.

[15] M. Baranowski, S. He, and Z. Rakamarić, “Verifying Rust pro-
grams with smack,” in Automated Technology for Verification
and Analysis (ATVA ’18), Los Angeles, CA, Oct. 2018.

[16] K. Dewey, J. Roesch, and B. Hardekopf, “Fuzzing the Rust type-
checker using clp (t),” in Proceedings of the 2015 30th IEEE/ACM
International Conference on Automated Software Engineering
(ASE ’15), Lincoln, NE, Nov. 2015.

[17] S. Kan, D. Sanán, S. Lin, and Y. Liu, “K-rust: An executable formal
semantics for Rust,” CoRR, 2018.

[18] CVE, “Common Vulnerabilities and Exposures,” 2019. [Online].
Available: https://cve.mitre.org/cve/

[19] RustSec, “Security advisory database for Rust crates,” 2019.
[Online]. Available: https://github.com/RustSec/advisory-db

[20] T. Tu, X. Liu, L. Song, and Y. Zhang, “Understanding
real-world concurrency bugs in go,” in Proceedings of
the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS ’19), Providence, RI, Apr. 2019.

[21] Z. Cutner, N. Yoshida, and M. Vassor, “Deadlock-free asyn-
chronous message reordering in Rust with multiparty session
types,” in Proceedings of the 27th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, 2022, pp. 246–
261.

[22] D. J. Pearce, “A lightweight formalism for reference lifetimes
and borrowing in Rust,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 43, no. 1, pp. 1–73, 2021.

[23] K. R. Fulton, A. Chan, D. Votipka, M. Hicks, and M. L. Mazurek,
“Benefits and drawbacks of adopting a secure programming
language: Rust as a case study,” in Seventeenth Symposium on
Usable Privacy and Security (SOUPS 2021), 2021, pp. 597–616.

[24] Z. Li, J. Wang, M. Sun, and J. C. Lui, “Mirchecker: Detecting bugs
in Rust programs via static analysis,” in Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications
Security (CCS ’21), Virtual, 2021.

[25] M. Cui, C. Chen, H. Xu, and Y. Zhou, “SafeDrop: Detecting
memory deallocation bugs of Rust programs via static data-

flow analysis,” ACM Transactions on Software Engineering and
Methodology, vol. 32, no. 4, pp. 1–21, 2023.

[26] Y. Takashima, R. Martins, L. Jia, and C. S. Păsăreanu, “Syrust:
automatic testing of Rust libraries with semantic-aware pro-
gram synthesis,” in Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and
Implementation, New York, NY, United States, June 2021, pp.
899–913.

[27] W. Li, D. He, Y. Gui, W. Chen, and J. Xue, “A context-sensitive
pointer analysis framework for Rust and its application to call
graph construction,” in Proceedings of the 33rd ACM SIGPLAN
International Conference on Compiler Construction (CC ’24),
Edinburgh, United Kingdom, March 2024, pp. 60–72.

[28] Z. Xu, B. Wu, C. Wen, B. Zhang, S. Qin, and M. He, “RPG: Rust
library fuzzing with pool-based fuzz target generation and generic
support,” April 2024.

[29] Wikipedia, “Lint (software),” 2023. [Online]. Available: https:
//en.wikipedia.org/wiki/Lint (software)

[30] Y. Bae, K. Youngsuk, A. Askar, J. Lim, and T. Kim, “Rudra:
Finding memory safety bugs in Rust at the ecosystem scale,” in
Proceedings of the 28th ACM Symposium on Operating Systems
Principles (SOSP ’21), Virtual, 2021.

[31] B. Qin, Y. Chen, Z. Yu, L. Song, and Y. Zhang, “Understanding
memory and thread safety practices and issues in real-world Rust
programs,” in Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI
’20), London, UK, 2020.

[32] S. Overflow, “Stack Overflow Developer Survey 2019,” 2019.
[Online]. Available: https://insights.stackoverflow.com/survey/
2019#most-loved-dreaded-and-wanted

[33] Stack Overflow, “Stack Overflow Developer Survey 2020,” 2020.
[Online]. Available: https://insights.stackoverflow.com/survey/
2020#most-loved-dreaded-and-wanted

[34] Stack Overflow, “Stack Overflow Developer Survey 2021,” 2021.
[Online]. Available: https://insights.stackoverflow.com/survey/
2021

[35] Octoverse, “The State of Octoverse,” 2019. [Online]. Available:
https://octoverse.github.com/

[36] IotEdge, “IoT Edge Security Daemon,” 2019. [Online]. Available:
https://github.com/Azure/iotedge/tree/master/edgelet

[37] Firecracker, “Secure and fast microVMs for serverless computing,”
2019. [Online]. Available: https://firecracker-microvm.github.io/

[38] K. Boos and L. Zhong, “Theseus: A state spill-free operating
system,” in Proceedings of the 9th Workshop on Programming
Languages and Operating Systems (PLOS ’17), Shanghai, China,
Oct. 2017.

[39] Tikv, “A distributed transactional key-value database,” 2019.
[Online]. Available: https://tikv.org/

[40] MSRC, “Why Rust for safe systems programming,” 2019.
[Online]. Available: https://msrc-blog.microsoft.com/2019/07/
22/why-rust-for-safe-systems-programming

[41] C. Cimpanu, “Microsoft to explore using Rust,”
2019. [Online]. Available: https://www.zdnet.com/article/
microsoft-to-explore-using-rust

[42] A. O. S. Blog, “AWS’ sponsorship of the Rust project,” 2019.
[Online]. Available: https://aws.amazon.com/blogs/opensource/
aws-sponsorship-of-the-rust-project/

[43] R. Amadeo, “Google is now writing low-
level Android code in Rust,” 2021. [On-
line]. Available: https://arstechnica.com/gadgets/2021/04/
google-is-now-writing-low-level-android-code-in-rust/

[44] Ethereum, “The Ethereum Project,” 2019. [Online]. Available:
https://www.ethereum.org/

[45] A. Levy, B. Campbell, B. Ghena, D. B. Giffin, P. Pannuto, P. Dutta,
and P. Levis, “Multiprogramming a 64kb computer safely and
efficiently,” in Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP ’17), Shanghai, China, October 2017.

[46] Rand, “Rand. A Rust library for random number generation,”
2019. [Online]. Available: https://github.com/rust-random/rand

[47] Crossbeam, “Tools for concurrent programming in Rust,” 2019.
[Online]. Available: https://github.com/crossbeam-rs/crossbeam

[48] Threadpool, “A very simple thread pool for parallel task
execution,” 2019. [Online]. Available: https://github.com/
rust-threadpool/rust-threadpool

[49] Rayon, “A data parallelism library for Rust,” 2019. [Online].
Available: https://github.com/rayon-rs/rayon

[50] Lazy-static, “A macro for declaring lazily evaluated statics in Rust.”

https://doc.rust-lang.org/stable/book/2018-edition/
https://doc.rust-lang.org/stable/book/2018-edition/
http://squidarth.com/rc/rust/2018/06/04/rust-concurrency.html
http://squidarth.com/rc/rust/2018/06/04/rust-concurrency.html
https://www.rust-lang.org/
https://www.rust-lang.org/
https://blog.gds-gov.tech/appreciating-rust-memory-safety-438301fee097
https://blog.gds-gov.tech/appreciating-rust-memory-safety-438301fee097
https://benchmarksgame-team.pages.debian.net/benchmarksgame/faster/rust.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/faster/rust.html
https://insights.stackoverflow.com/survey/2016#technology-most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2016#technology-most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2017#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2017#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2018/#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2018/#most-loved-dreaded-and-wanted
https://servo.org/
https://wiki.mozilla.org/Quantum
https://wiki.mozilla.org/Quantum
https://stratis-storage.github.io/
https://www.tockos.org/
https://www.redox-os.org/
https://cve.mitre.org/cve/
https://github.com/RustSec/advisory-db
https://en.wikipedia.org/wiki/Lint_(software)
https://en.wikipedia.org/wiki/Lint_(software)
https://insights.stackoverflow.com/survey/2019#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2019#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2020#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2020#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2021
https://insights.stackoverflow.com/survey/2021
https://octoverse.github.com/
https://github.com/Azure/iotedge/tree/master/edgelet
https://firecracker-microvm.github.io/
https://tikv.org/
https://msrc-blog.microsoft.com/2019/07/22/why-rust-for-safe-systems-programming
https://msrc-blog.microsoft.com/2019/07/22/why-rust-for-safe-systems-programming
https://www.zdnet.com/article/microsoft-to-explore-using-rust
https://www.zdnet.com/article/microsoft-to-explore-using-rust
https://aws.amazon.com/blogs/opensource/aws-sponsorship-of-the-rust-project/
https://aws.amazon.com/blogs/opensource/aws-sponsorship-of-the-rust-project/
https://arstechnica.com/gadgets/2021/04/google-is-now-writing-low-level-android-code-in-rust/
https://arstechnica.com/gadgets/2021/04/google-is-now-writing-low-level-android-code-in-rust/
https://www.ethereum.org/
https://github.com/rust-random/rand
https://github.com/crossbeam-rs/crossbeam
https://github.com/rust-threadpool/rust-threadpool
https://github.com/rust-threadpool/rust-threadpool
https://github.com/rayon-rs/rayon

18

2019. [Online]. Available: https://github.com/rust-lang-nursery/
lazy-static.rs

[51] J. Xu, D. Mu, P. Chen, X. Xing, P. Wang, and P. Liu, “Credal:
Towards locating a memory corruption vulnerability with your
core dump,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’16), Vienna,
Austria, Oct. 2016.

[52] J. Xu, D. Mu, X. Xing, P. Liu, P. Chen, and B. Mao, “Pomp:
Postmortem program analysis with hardware-enhanced post-
crash artifacts,” in Proceedings of the 26th USENIX Conference
on Security Symposium (Security ’17), Vancouver, Canada, Oct.
2017.

[53] W. Cui, X. Ge, B. Kasikci, B. Niu, U. Sharma, R. Wang, and
I. Yun, “Rept: Reverse debugging of failures in deployed software,”
in Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation (OSDI ’18), Carlsbad, CA,
Oct. 2018.

[54] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes –
a comprehensive study of real world concurrency bug charac-
teristics,” in Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’08), Seattle, WA, Mar. 2008.

[55] T. Leesatapornwongsa, J. F. Lukman, S. Lu, and H. S. Gu-
nawi, “Taxdc: A taxonomy of non-deterministic concurrency
bugs in datacenter distributed systems,” in Proceedings of
the 21th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’16),
Atlanta, GA, Apr. 2016.

[56] Z. Lin, D. Marinov, H. Zhong, Y. Chen, and J. Zhao, “Jacontebe:
A benchmark suite of real-world java concurrency bugs,” in 30th
IEEE/ACM International Conference on Automated Software
Engineering (ASE ’15), Lincoln, NE, Nov. 2015.

[57] W. Zhang, C. Sun, and S. Lu, “Conmem: detecting severe concur-
rency bugs through an effect-oriented approach,” in Proceedings
of the 15th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’10),
Pittsburgh, PA, Mar. 2010.

[58] W. Zhang, J. Lim, R. Olichandran, J. Scherpelz, G. Jin, S. Lu, and
T. Reps, “Conseq: Detecting concurrency bugs through sequential
errors,” in Proceedings of the Sixteenth International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’11), New York, NY, USA, 2011.

[59] CVE, “CVE-2018-1000810,” 2018. [Online]. Available: https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1000810

[60] R. v. Tonder and C. L. Goues, “Static automated program repair
for heap properties,” in Proceedings of the 40th International
Conference on Software Engineering (ICSE ’18), Gothenburg,
Sweden, May 2018.

[61] S. Huang, J. Guo, S. Li, X. Li, Y. Qi, K. Chow, and J. Huang,
“Safecheck: Safety enhancement of java unsafe api,” in Proceedings
of the 41st International Conference on Software Engineering
(ICSE ’19), Montreal, Quebec, Canada, May 2019.

[62] Rust-book, “Fearless Concurrency,” 2019. [Online]. Available:
https://doc.rust-lang.org/book/ch16-00-concurrency.html

[63] R. Martins, “Interior mutability in Rust, part 2: thread safety,”
2016. [Online]. Available: https://ricardomartins.cc/2016/06/25/
interior-mutability-thread-safety

[64] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk, “Ef-
fective data-race detection for the kernel,” in Proceedings of
the 9th USENIX Conference on Operating Systems Design and
Implementation (OSDI ’10), Vancouver, Canada, Oct. 2010.

[65] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: A dynamic data race detector for multithreaded programs,”
ACM Transactions on Computer Systems, 15(4):391-411, 1997.

[66] Y. Yu, T. Rodeheffer, and W. Chen, “Racetrack: Efficient detection
of data race conditions via adaptive tracking,” in Proceedings
of the 20th ACM symposium on Operating systems principles
(SOSP ’05), Brighton, United Kingdom, Oct. 2005.

[67] L. Chew and D. Lie, “Kivati: Fast detection and prevention
of atomicity violations,” in Proceedings of the 5th European
Conference on Computer systems (EuroSys ’10), Paris, France,
Apr. 2010.

[68] S. Lu, J. Tucek, F. Qin, and Y. Zhou, “Avio: Detecting atomicity
violations via access interleaving invariants,” in Proceedings of
the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’06),
San Jose, CA, Oct. 2006.

[69] C. Flanagan and S. N. Freund, “Atomizer: A dynamic atom-
icity checker for multithreaded programs,” in Proceedings of
the 31st ACM SIGPLAN-SIGACT symposium on Principles of
programming languages (POPL ’04), Venice, Italy, Jan. 2004.

[70] J. Huang, “Scalable thread sharing analysis,” in Proceedings of
the 38th International Conference on Software Engineering (ICSE
’16), New York, NY, USA, 2016.

[71] Q. Gao, W. Zhang, Z. Chen, M. Zheng, and F. Qin, “2nd-
strike: Toward manifesting hidden concurrency typestate
bugs,” in Proceedings of the 16th International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’11), Newport Beach, CA, Mar. 2011.

[72] B. Lucia and L. Ceze, “Finding concurrency bugs with
context-aware communication graphs,” in Proceedings of
the 42nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO ’09), New York, NY, Dec. 2009.

[73] J. Yu and S. Narayanasamy, “A case for an interleaving con-
strained shared-memory multi-processor,” in Proceedings of the
36th annual International symposium on Computer architecture
(ISCA ’09), Austin, TX, Jun. 2009.

[74] A. Turon, “Fearless Concurrency with Rust,” 2015.
[Online]. Available: https://blog.rust-lang.org/2015/04/10/
Fearless-Concurrency.html

[75] H. Liu, Y. Chen, and S. Lu, “Understanding and generating high
quality patches for concurrency bugs,” in Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE ’16), Seattle, WA, Nov. 2016.

[76] G. Jin, W. Zhang, D. Deng, B. Liblit, and S. Lu, “Automated
concurrency-bug fixing,” in Proceedings of the 10th USENIX
Conference on Operating Systems Design and Implementation
(OSDI’12), Hollywood, CA, Oct. 2012.

[77] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit, “Automated
atomicity-violation fixing,” in Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’ 11), San Jose, CA, Jun. 2011.

[78] Rust RFC, “1211-mir,” 2021. [Online]. Available: https:
//rust-lang.github.io/rfcs/1211-mir.html

[79] Z. Liu, S. Zhu, B. Qin, H. Chen, and L. Song, “Automatically
detecting and fixing concurrency bugs in go software sys-
tems,” in Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’21), Virtual, USA, 2021.

[80] D. Engler and K. Ashcraft, “Racerx: Effective, static detection of
race conditions and deadlocks,” ACM SIGOPS operating systems
review, vol. 37, no. 5, pp. 237–252, 2003.

[81] G. Lee, W. Shim, and B. Lee, “Constraint-guided directed
greybox fuzzing,” in Proceedings of the 30th USENIX Security
Symposium (USENIX Security ’21), Virtual Conference, 2021.

[82] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury,
“Directed greybox fuzzing,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security
(CCS ’17), Dallas, Texas, USA, 2017.

[83] C. Lattner and V. Adve, “LLVM: A compilation framework for life-
long program analysis & transformation,” in Proceedings of the
International Symposium on Code Generation and Optimization
(CGO ’04’), Washington, DC, USA, 2004.

[84] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and
automatic generation of high-coverage tests for complex sys-
tems programs,” in Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation (OSDI ’08),
Berkeley, CA, USA, 2008.

[85] Rust-clippy, “A bunch of lints to catch common mistakes
and improve your Rust code,” 2019. [Online]. Available:
https://github.com/rust-lang/rust-clippy

[86] Z. Li, J. Wang, M. Sun, and J. C. S. Lui, “Detecting cross-language
memory management issues in Rust,” in Proceedings of the
27th European Symposium on Research in Computer Security
(ESORICS ’2022), Copenhagen, Denmark, 2022.

[87] Miri, An interpreter for Rust’s mid-level intermediate representation,
2019. [Online]. Available: https://github.com/rust-lang/miri

[88] R. Jung, H.-H. Dang, J. Kang, and D. Dreyer, “Stacked borrows:
An aliasing model for Rust,” in Proceedings of the 47th ACM
SIGPLAN Symposium on Principles of Programming Languages
(POPL ’20), New Orleans, LA, January 2020.

[89] P. Liu, G. Zhao, and J. Huang, “Securing unsafe Rust programs
with XRust,” in Proceedings of the 42nd International Conference
on Software Engineering (ICSE ’20), Seoul, South Korea, Jul. 2020.

https://github.com/rust-lang-nursery/lazy-static.rs
https://github.com/rust-lang-nursery/lazy-static.rs
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1000810
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1000810
https://doc.rust-lang.org/book/ch16-00-concurrency.html
https://ricardomartins.cc/2016/06/25/interior-mutability-thread-safety
https://ricardomartins.cc/2016/06/25/interior-mutability-thread-safety
https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html
https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html
https://rust-lang.github.io/rfcs/1211-mir.html
https://rust-lang.github.io/rfcs/1211-mir.html
https://github.com/rust-lang/rust-clippy
https://github.com/rust-lang/miri

19

[90] E. Reed, “Patina: A formalization of the Rust programming
language,” University of Washington, Tech. Rep. UW-CSE-15-
03-02, 2015.

[91] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical
study of operating systems errors,” in Proceedings of the 18th
ACM symposium on Operating Systems Principles (SOSP ’01),
Banff, Canada, Oct. 2001.

[92] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and S. Lu, “A
study of linux file system evolution,” in Proceedings of the 11th
USENIX Conference on File and Storage Technologies (FAST ’13),
San Jose, CA, Feb. 2013.

[93] R. Gu, G. Jin, L. Song, L. Zhu, and S. Lu, “What change history tells
us about thread synchronization,” in Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, Bergamo,
Italy, Aug. 2015.

[94] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu, “Understanding
and detecting real-world performance bugs,” in Proceedings of
the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’ 12), Beijing, China, Jun. 2012.

[95] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-anake,
T. Do, J. Adityatama, K. J. Eliazar, A. Laksono, J. F. Lukman,
V. Martin, and A. D. Satria, “What bugs live in the cloud? a study
of 3000+ issues in cloud systems,” in Proceedings of the ACM
Symposium on Cloud Computing (SOCC’ 14), Seattle, WA, Nov.
2014.

[96] H. Xu, Z. Chen, M. Sun, Y. Zhou, and M. R. Lyu, “Memory-safety
challenge considered solved? an in-depth study with all Rust
cves,” ACM Trans. Softw. Eng. Methodol., 2021.

[97] A. Ozdemir, “Unsafe in Rust: Syntactic Patterns,” 2019.
[Online]. Available: https://cs.stanford.edu/∼aozdemir/blog/
unsafe-rust-syntax

[98] A. Ozdemir, “Unsafe in Rust: The Abstraction Safety
Contract and Public Escape,” 2019. [Online]. Available:
https://cs.stanford.edu/∼aozdemir/blog/unsafe-rust-escape

[99] M. Sun, Y. Zhang, and T. Wei, “When memory-safe languages
become unsafe,” in DEF CON China (DEF CON China ’18’),
Beijing, China, 2018.

[100] A. N. E. Evans, B. C. Campbell, and M. L. Soffa, “Is Rust used
safely by software developers?” in Proceedings of the 42nd
International Conference on Software Engineering (ICSE ’20),
Seoul, South Korea, Jul. 2020.

Boqin Qin received the PhD in computer science
from Beijing University of Posts and Telecommu-
nications. He is a researcher and developer in
China Telecom Cloud Technology Co., Ltd. He
was a visiting student at the Pennsylvania State
University and did this work during his visiting.
His current research interests focus on program
analysis, blockchain security, and distributed sys-
tems.

Yilun Chen is a software engineer at Honey-
combData Inc. His research interests include
operating systems, distributed systems and the
reliability of software systems. Chen received his
B.Eng from Anhui University and M.S. from the
University of Florida.

Haopeng Liu received the PhD degree in com-
puter science from the University of Chicago. His
main research interests include program analysis,
software systems, and software reliability.

Hua Zhang received the PhD in cryptography
from the Beijing University of Posts and Telecom-
munications. She is an associate professor at
the Beijing University of Posts and Telecommu-
nications. Her current research interests focus
on smart grids security, network security, crypto-
graphic application, and privacy preserve. She is
a Member of IEEE.

Qiaoyan Wen received the PhD degree in cryp-
tography from Xidian University. She is a pro-
fessor at the Beijing University of Posts and
Telecommunications. Her current research inter-
ests include cryptography, information security,
Internet security, and applied mathematics.

Linhai Song Linhai Song received the PhD
in computer science from the University of
Wisconsin–Madison. He is an assistant professor
in the College of Information Sciences and Tech-
nology at the Pennsylvania State University. His
main research interests are software reliability
and software systems.

Yiying Zhang received the PhD in computer sci-
ence from the University of Wisconsin–Madison.
She is an assistant professor in the Computer
Science and Engineering Department at the Uni-
versity of California, San Diego. Her research
interests are operating systems, distributed sys-
tems, computer architecture, and datacenter net-
working.

https://cs.stanford.edu/~aozdemir/blog/unsafe-rust-syntax
https://cs.stanford.edu/~aozdemir/blog/unsafe-rust-syntax
https://cs.stanford.edu/~aozdemir/blog/unsafe-rust-escape

	Introduction
	Background and Related Work
	Language Overview and History
	Safety Mechanisms
	Unsafe and Interior Unsafe
	Error and Error Handling

	Study Methodology
	Memory Safety Issues
	Bug Analysis Results
	Fixing Strategies

	Thread Safety Issues
	Blocking Bugs
	Non-Blocking Bugs

	Unexpected panic issues
	Bug Analysis Results
	Fixing Strategies

	Static Bug Detection
	Design and Algorithm
	Evaluation
	Effectiveness
	Accuracy
	Performance

	Related Work
	Bug Detection in Rust
	Formalizing and Proving Rust's Correctness
	Empirical Studies

	Conclusion
	References
	Biographies
	Boqin Qin
	Yilun Chen
	Haopeng Liu
	Hua Zhang
	Qiaoyan Wen
	Linhai Song
	Yiying Zhang

