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The execution of smart contracts on Ethereum, a public blockchain system, incurs a fee called gas
fee for its computation and data storage. When programmers develop smart contracts (e.g., in the
Solidity programming language), they could unknowingly write code snippets that unnecessarily
cause more gas fees. These issues, or what we call gas wastes, can lead to significant monetary
losses for users. This paper takes the initiative in helping Ethereum users reduce their gas fees in
two key steps. First, we conduct an empirical study on gas wastes in open-source Solidity
programs and Ethereum transaction traces. Second, to validate our study findings, we develop a
static tool called PeCatch to effectively detect gas wastes in Solidity programs, and manually
examine the Solidity compiler’s code to pinpoint implementation errors causing gas wastes.
Overall, we make 11 insights and four suggestions, which can foster future tool development and
programmer awareness, and fixing our detected bugs can save $0.76 million in gas fees daily.

Index Terms—Smart Contracts, Bug Study, Static Bug Detection, Gas Optimization

1 INTRODUCTION

S a public blockchain system, Ethereum enables the
deployment and execution of smart contracts [1]], [2],
allowing developers to create sophisticated decentralized
applications (dapps) [3]]. These smart contracts are essential
to Ethereum’s digital economy, facilitating over 1 million
daily transactions with a total volume exceeding $4 billion
[4]. Additionally, several projects on Ethereum have reached
impressive market values of surpassing $1 billion [5], [6].
Solidity, the official programming language of
Ethereum [7], resembles ECMAScript and simplifies
smart contract development by concealing the complexities
of Ethereum Virtual Machine (EVM) and integrating
security features. It has gained immense popularity among
smart-contract programmers [8], [9], with almost all
Ethereum contracts written in Solidity [10], adding over 1
million new contracts quarterly.
To safeguard Ethereum’s computational resources from
DoS attacks and tax Ethereum transactions, a fee called gas is
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charged for executing each smart contract [11], [12]]. Besides
correctness, performance, and security, gas is another cru-
cial metric for smart contracts on Ethereum. Various EVM
operations incur different gas costs, and some may have a
complicated gas computation formula. While Solidity hides
the complexities of EVM, it also obscures how gas fees
are charged for each piece of Solidity code. Consequently,
Solidity programmers struggle to optimize gas usage, often
resulting in gas-inefficient code (i.e., code that can be opti-
mized to use less gas). Unfortunately, the Solidity compiler
lacks sufficient optimizations for gas efficiency, leading to
significant gas wastage on Ethereum.

Given the significant daily gas fee expenditure by So-
lidity programs on Ethereum [13], optimizing code for gas
efficiency is paramount. To achieve this over-arching goal,
the foundational step is to comprehend how gas inefficiency
occurs in real Solidity programs and how such inefficiency
could be avoided. Doing so can guide the focus of tool
development and language improvements, which in turn
could help Ethereum users save substantial amounts of
money. In this paper, we define one gas-inefficient code site
in a Solidity program as one gas waste.

While defects affecting correctness and performance
have been extensively studied in traditional programs [14],
[15], [16], [17], [18]], the methodologies and tools used to
detect these bugs cannot be directly applied to gas wastes
in Solidity programs due to their unique characteristics:
the amount of gas consumption by a code segment is not
proportional to its performance or execution outcome. Moreover,
the EVM’s unique non-register-based instructions, intricate



data-store system, and complex gas cost model mean that
gas wastes have root causes and code patterns not found in other
programming languages.

To understand gas wastes in Solidity, we take an empir-
ical approach. We first study existing, patched gas wastes
in real Solidity programs. We then analyze on-chain traces
of Ethereum transactions to inspect wastes that may go
unnoticed by programmers and thus escape into production
runs. Finally, we develop gas-waste detection tools that au-
tomatically identify previously undiscovered gas wastes in
Solidity programs and manually capture bugs in the Solidity
compiler to demonstrate the value of the study results. Our
empirical approach reveals important characteristics of gas
wastes in real life — those gas wastes programmers are
likely to make and cost much money, thereby directing
future efforts in more effective directions.

We study 100 gas wastes, including 54 specific to Solid-
ity, from five popular Solidity applications. We categorize
these wastes based on the data store areas where the gas-
inefficient code executes: stack, where instruction operands
and results sit on; memory, a volatile and byte-addressable
area; storage, a persistent key-value data store; and calldata,
byte-addressable arrays used for sending data across con-
tracts. Each of these areas has different gas cost models (e.g.,
storage consumes 50x more gas than stack and memory)
and uses various types of instructions, leading to different
root causes and buggy code patterns for gas wastes. After in-
specting wastes in different groups, we find that the misuse
of stack and storage are the primary and secondary causes
of gas wastes, that the Solidity compiler may cause gas
wastes when trading gas usage for contract reliability, and
that programmers often write gas-inefficient code that does
not properly utilize Solidity’s unique language features.

Our on-chain trace analysis examines ten million
Ethereum transactions over ten days, revealing a total gas
fee of $160 million. We focus primarily on frequently exe-
cuted opcode sequences and those without any side effects
after execution, aiming to collect gas wastes with substantial
fixing rewards. After analyzing the characteristics of the
collected wastes, we observe that contract programmers
may incorrectly balance gas usage when exercising trans-
actions of a contract and gas usage when deploying the
contract, and that many wastes on the stack are due to
compiler implementation issues. Addressing bugs in the
compiler, particularly those affecting opcode generation for
stack manipulation, is essential to reduce gas consumption.

In total, our analysis of real-world gas wastes and online
traces yields 11 insights and four suggestions. Most of
these insights (except Insight 4) have not been reported
in previous literature. While some of them (Insight 4 and
Suggestions 1, 3, and 4) overlap with findings from existing
papers, our focus is on understanding how gas is wasted
in practice and we provide real data to demonstrate how
frequently they impact the real world and their monetary
consequences, making the reporting of these findings still
valuable in practical terms.

To identify gas wastes in Solidity programs, we develop
PeCatch, a suite of six static checkers. We implement these
checkers with careful consideration of Solidity’s unique
store mechanisms and language features (e.g., unchecked,
calldata). We evaluate PeCatch on the latest versions of
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the five studied Solidity applications and four additional
open-source Solidity projects. PeCatch detects a total of
302 previously unknown gas wastes in the benchmark pro-
grams, significantly more than existing techniques [19], [20],
[21], [22], [23], [24], while reporting zero false positives.
Additionally, we pinpoint 14 bugs causing gas wastes in the
Solidity compiler. Fixing the detected wastes and compiler
bugs could save $0.76 million every day. The effectiveness
and accuracy of PeCatch, along with the substantial mone-
tary impact of identified issues, underscore the value of our
empirical study.
In sum, we make the following contributions.

e We conduct an empirical study on real-world gas
wastes, deriving 11 key insights and proposing four
recommendations for future language designers and
programmers.

o We develop PeCatch, a tool much more effective in gas-
waste detection than state-of-the-art techniques.

o We uncover numerous issues in Solidity programs and
the Solidity compiler, with a large monetary impact.

We have released our study results, source code of
our bug detector, and detailed experimental results, all
of which can be found at https://github.com/PeCatch-
Artifact/PeCatch-Artifact.

2 BACKGROUND AND RELATED WORK

This section describes the background of this project, in-
cluding Ethereum, the Solidity programming language, gas
wastes, and existing techniques related to ours.

2.1 Ethereum and the Gas Mechanism

As a blockchain system, Ethereum empowers programmers
to write smart contracts for dapps [1]], [2]. Ethereum’s native
cryptocurrency is Ether (ETH). Within Ethereum, both users
and smart contracts are distinct accounts with unique ad-
dresses for interaction. An Ethereum transaction involves a
series of computations initiated by a message from a user
account, ranging from simple Ether transfers to complex
computations implemented by multiple smart contracts.
The EVM serves as the execution environment for trans-
actions, ensuring consensus upon transaction commitment.

Gas represents the cost of executing computations on
Ethereum, and users must pay gas fees for their transac-
tions [11], [12]. When submitting a transaction, the user
specifies both the maximum gas limit and the priority fee
she is willing to pay to incentivize miners to prioritize
processing the transaction. Certain gas units are charged
to exercise each instruction. If the gas usage exceeds the
limit, the transaction is canceled, and any changes are rolled
back. Gas prevents malicious computations from depleting
Ethereum’s resources.

2.2 Solidity Programming Language

Solidity, as the most popular programming language for
writing smart contracts [10], features language elements
tailored to reflect smart contracts’ semantics. The primary
building block in Solidity is contract (similar to class
in Java), encompassing fields for storing states, functions
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contract Warehouse {
mapping (address => uint)
uint _sig;
struct CTX {uint _sig;}
function transfer (address from, address to, uint
amount, CTX calldata data) external ({
CTX memory ctx = data; gas
require (_sig == ctx._siqg);
require (_bal[from] >= amount);
uint old = _bal[from];
unchecked { old —-= amount;} //
_bal[from] = old;
_bal[to] += amount;

b}

private _bal;
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Fig. 1: A smart contract example with a gas waste.

for functionalities, and events for logging. Solidity pro-
vides various types, including primitive types like integer
types and address, and complex types like struct and
mapping, enabling diverse transaction protocols. It offers
a complex data store system with four distinct areasﬂ each
with its own set of instructions for interaction and gas-cost
model.
Stack: The EVM operates as a stack-based machine, lacking
registers. The stack serves as the primary area for interacting
with instructions, providing operands and receiving results.
It can hold a maximum of 1024 32-byte words, with direct
accesses limited to the topmost 16 words. Most stack oper-
ations incur only two or three gas units each, making it the
most economical store area.
Memory. Memory is designated for holding complex types
(e.g., struct) that cannot reside on the stack. It functions
as a byte-addressable array, with operations like m1oad for
reading data from the memory and mstore and mstore8
for modifying the memory. Memory is not persistent across
transactions, and accessing it incurs slightly higher costs
than the stack, unless memory expansion happens. For
example, both mload and mstore consume three gas units.
Storage. Storage stores the persistent state variables (contract
fields) of contracts across transactions. It operates as a key-
value store, with keys assigned unique IDs following the
declaration order of contract fields. Solidity optimizes stor-
age usage by packing multiple consecutive contract fields
into single words if they are smaller than 32 bytes. Inter-
actions with storage, such as sload and sstore, consume
significantly more gas compared to other areas.
Calldata. Calldata facilitates data transfer from the caller
to the callee when invoking a function in a different con-
tract. It operates as a byte-addressable array, with the
first four bytes reserved for identifying the callee function,
while the remaining bytes store arguments. Instructions
like calldataload and calldatacopy enable reading
values from the calldata. Unlike memory, the calldata area
is read-only, with no instructions available for modification.
Reading data from calldata incurs the same gas cost as
reading data from memory.

Figure [I| shows an example of Solidity code featuring
contract Warehouse. Warehouse uses its _bal field in
line 2 to monitor the quantity of tokens held by each

1. We disregard the store area transient in this paper, as it was intro-
duced very recently and is mainly used for implementing reentrancy
guards.
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address. The transfer () function in line 5 transfers tokens
between addresses, with its four parameters representing
sender, receiver, transferred amount, and context, respec-
tively.

This code involves all four store areas. All contract fields
(e.g., _bal in line 2) are on the storage. The first three
function parameters are on the stack. Moreover, the results
of reading from a storage slot (e.g., line 9) and mathemat-
ical computations are also on the stack (e.g., line 10). The
calldata parameter data is copied to the memory struct
ctx in line 6. Gas consumption for each source-code line is
also shown in the figure. Reading or writing a storage slot
(e.g., line 9, line 11) consumes more than 200 gas units. The
write in line 12 consumes significantly more gas than line
11, because it alters a storage slot from zero to non-zero. If
the unchecked in line 10 is removed, an underflow check
will be added by the compiler, resulting in gas consump-
tion of more than 100. Line 6 involves memory allocation
and boundary check operations. Thus, its gas consumption
exceeds 600 units.

2.3 Gas Wastes

Ethereum calculates gas usage intricately, with various op-
codes consuming differing amounts of gas. Accessing data
from different storage areas incurs varied gas costs (e.g.,
storage access is pricier than stack access). Moreover, even
the same opcode on the same store area can have different
gas consumption. For example, changing a storage word
from 0 to 1 consumes over 10K gas units — significantly
more than changing it between non-zero values. Conse-
quently, Solidity programmers may inadvertently write gas-
inefficient code. Furthermore, Ethereum faces millions of
dollars in daily gas fees, highlighting the crucial need to
optimize gas usage for Solidity programs [13].

In this paper, we define “gas wastes” as code segments
that unnecessarily consume excessive gas. These inefficien-
cies can be fixed without compromising original function-
alities. Our goal is to decrease gas costs by detecting and
fixing gas wastes before deploying contracts on Ethereum.
Subsequently, after deployment, contract users will pay
lower gas fees for equivalent computations, which could
increase their willingness to interact with the contracts.

Gas wastes resemble performance bugs in traditional
programming languages [18], [25], [26], [27], [28] in that
neither affects the correctness of the program outcome, but
gas wastes differ in several ways. First, their impacts are
measured in different ways: gas wastes are measured by the
monetary cost of running a contract, but performance bugs
are measured by the time (latency, throughput) to run a pro-
gram. Second, different data store areas in Solidity manage
data with varying lifespans (e.g., persistent data is stored
in storage, and stack is used for temporary data within a
function), and contracts can access these store areas directly.
Additionally, the type of data store operations performed
significantly influences the gas costs of executing a contract.
On the other hand, a program’s memory system organizes
data based on access frequency. When data from a distant
store area is accessed by the processor, it is automatically
cached in a closer store area to improve efficiency. Third,
the EVM differs from traditional architectures (e.g., JVM)



TABLE 1: Information of Selected Solidity Applications.
(Unique: wastes unique to Solidity.)

[Apps [ Stars [ Commits | LoC [ Contracts | Wastes [ Unique |
OpenZeppelin | 22623 | 3311 11457 280 23 14
Uniswap V3 | 3725 1005 3382 62 27 13
uniswap-lib 140 73 666 17 4 1
solmate 3231 426 6840 36 25 13
Seaport 1992 5400 6646 62 21 13

by having its own unique opcodes (e.g., opcodes that allow
direct access to the persistent store area), while lacking
certain opcodes and hardware features (e.g., registers or
local variables that function like registers) typically found in
those traditional architectures. As a result, some gas wastes
are unique to EVM. Therefore, study results of performance
bugs cannot be applied to gas wastes and the smart-contract
environment.

2.4 Related Work

Gas Usage Optimization. Gas usage optimization is a cru-
cial focus for the official Solidity language team. In version
0.8.0, Solidity introduced automated overflow and under-
flow checks for all mathematical operations. Additionally, it
offered the “unchecked” feature, allowing programmers to
mark specific code regions to disable the checks and save
gas [29]. The Solidity compiler provides two types of gas
usage optimizations [24]. Unfortunately, these optimizations
are conservative and utilize algorithms commonly used in
traditional programming language compilers. As a result,
they cannot address most of the gas wastes discussed in
Section 3| Furthermore, we have no indication that these
wastes will be optimized in future releases of the Solidity
compiler.

Researchers have developed multiple detection tech-
niques to identify gas wastes in Solidity programs [19], [20],
[22]], [30], [31], [32], [33], [34], [35], [36], [37]. Although use-
ful, these techniques either solely apply traditional compiler
optimizations to Solidity, overlooking the language’s unique
features (e.g.. python-solidity-optimizer), or concentrate on
detecting only a restricted set of gas-inefficient code patterns
(e.g., gas wastes within on single basic block [35]). As a
result, these methods fall short of detecting the majority of
gas wastes in the real world. For example, in our evaluation,
MadMax [22] does not detect any gas wastes.

Previous works also offer general suggestions for saving
gas, such as reducing the amount of data stored on the
storage [38] and sacrificing contract readability [39]. Unlike
these studies, our research is based on specific issues col-
lected from contract repositories and online traces, making
our findings more concrete and actionable.

Researchers have also examined gas usage when deploy-
ing smart contracts [40], [41]. However, our primary focus
is on gas consumption during contract execution.

Overall, current compiler optimizations and detection
techniques are not sufficiently effective at capturing real-
world gas wastes, which is largely due to the lack of
empirical studies on gas wastes. Therefore, we perform such
a study. Our findings can guide future research on resolving
gas waste, as demonstrated by the results in Section 5|
Other Solidity Research. Researchers have conducted stud-
ies to comprehend various aspects of Solidity programs,
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TABLE 2: Solidity-specific gas wastes categorized by store
areas and reasons for not being optimized. (Lack: lack of
optimizations; Trade-off: trading gas usages for others; Issue:
implementation issues in the Solidity compiler.)

Why Not Optimized?
Store Areas |77 ¢ [ Trade-off [ Issue Total
Stack 2 14 8 24
Memory 4 0 0 4
Storage 20 0 0 20
Calldata 6 0 0 6
[ Total [ 32 [ 14 | 8 [ 54 |

including inline assembly code and loops in them [42],
[43]], their functionalities and associated design patterns [43],
their processed on-chain data [44], and their measurements
on source-code metrics [45]. However, none of them try to
understand gas-inefficient code patterns. Researchers build
many techniques to pinpoint different types of Solidity
bugs [46], [47], [48], [49], [50], [51]], [52]], [53], [54], [55], but
these techniques mainly improve Solidity programs’ safety
and security, not gas efficiency.

3 GAs WASTES IN REAL SoOLIDITY PROGRAMS

This section presents our empirical study on gas wastes
collected from real-world Solidity programs, including the
study’s methodology, the underlying root causes of the gas
wastes, and their fixing strategies.

3.1 Methodology

We gather the studied gas wastes from five open-source
Solidity applications in Table [1} We select these five appli-
cations for several reasons. First, they are popular GitHub
repositories. For instance, OpenZeppelin [56] boasts 22K
GitHub stars. Second, these applications serve as funda-
mental components for numerous essential blockchain ap-
plications. Consequently, analyzing gas inefficiency patterns
within them can yield a substantial impact. For instance,
Uniswap-lib [57] is shared among all Uniswap contracts.
Third, these applications encompass common functionali-
ties [58]], [59], [60] of Solidity programs, such as mathemati-
cal computations, token trading, and access control. Their
code accurately reflects typical coding practices used by
Solidity programmers.

To collect gas wastes, we employ a set of keywords to
search through the GitHub commit logs of the applications,
an established method for identifying real-world bugs [61],
[62]. Initially, we use “gas” and “opt” as keywords. As we
inspect more gas wastes, we iteratively expand our keyword
set to include “store,” “load,” and “uncheck” to ensure
comprehensive coverage. Overall, we find 371 commits
containing the five keywords. We then manually analyze
the search results to identify commits fixing gas wastes and
verify that the identified gas wastes cannot be optimized
by the Solidity compiler under the “~-optimize-runs”
option or the “~-via-ir” option using toy programs. In
total, we collect 100 instances of gas waste, as shown in
Table[T

To gain a comprehensive understanding of a gas waste,
we primarily rely on the information in the corresponding
commit. We thoroughly examine the modified code and



1 contract ERC20 {

2 uint public totalSupply;

3 mapping (address => uint) public balanceOf;
4 function transfer (address to, uint val)

external returns (bool) {
5 balanceOf [msg.sender] —= val;

6 - balanceOf[to] += val;

7 + unchecked { balanceOf[to] += val; }

8 return true;

9 }

0 function _mint (address to, uint256 val)

internal {

11 totalSupply += val;

12 balanceOf [to] += val;

13 + unchecked { balanceOf[to] += val;}
14 3}

Fig. 2: A gas waste fixed by unchecked in OpenZeppelin.

its surrounding code context. Moreover, we also pay care-
ful attention to the textual descriptions accompanying the
commit and discussions among programmers in the related
pull request and issue report. Each gas waste is studied
by at least two paper authors independently. All study
results are thoroughly discussed in multiple rounds to solve
disparities.

We employ a two-step approach to investigate the root
causes of gas wastes. Initially, we identify gas wastes that are
specific to Solidity, by considering whether or not the same
code can lead to performance issues in other programming
languages as well. As shown in Table [1} 54 out of the 100
gas wastes are associated with Solidity’s unique language
features. The remaining 46 gas wastes can be detected
using existing compiler optimizations and performance bug
detection techniques [17]], [18], [25], [27], [28]], [63], [64], [65],
6, [671, [68], [69], [701, [711, [72], [73], [74], [75], [76], [771,
[78], [79], 801, [81], [82], [83]], or they can be optimized with
better algorithms, regardless of programming languages or
underlying architectures. For instance, six gas wastes can be
patched by inlining a callee function, and seven gas wastes
are resolved by adopting new mathematical algorithms.
Since these gas wastes have been covered by the previously
cited papers, we focus our analysis on wastes unique to
Solidity.

Next, we categorize the 54 gas wastes specific to Solidity
by addressing the following questions. First, where is the data
manipulated by the gas-inefficient code stored? Since different
store areas involve distinct interaction instructions, lead-
ing to various buggy code patterns for corresponding gas
wastes, organizing gas wastes according to store areas can
guide the design of gas-waste detection methods. Second,
why can't the Solidity compiler optimize these gas wastes? An-
swering this question helps us understand the limitations
of the current toolchain and provides insights into potential
improvements. Third, what strategies are employed to fix these
wastes? By answering this question, we aim to identify
effective methods to optimize gas usage.

3.2 Store Areas

As shown in Table |2} we categorize the 54 gas wastes based
on their occurrence areas.

1 abstract contract ERC4626 {

2 mapping (address=>mapping (address=>uint)) allow;

3 function redeem(uint shares, address to,
address from) public {

4 uint a = allow[from] [msg.sender];

5 - if (msg.sender!=from && a!=type(uint).max) {

6 - allow([from] [msg.sender] = a - shares;

7 - }

8 + if (msg.sender != from) {

9 + if (a != type (uint) .max) {

10 + allow[from] [msg.sender] = a - shares;

1 + }}

12 }}

Fig. 3: A gas waste caused by using && in an if condition.

3.2.1 Stack

The EVM is a stack-based machine, without any register.
Thus, the stack is the most frequently accessed store area.
For example, all mathematical operations in Solidity take
operands from and output results back to the stack. As a
result, the “stack” category has the most gas wastes.

Not using unchecked when possible. In order to achieve good
security guarantees, Solidity provides various compiler
checks. For example, the Solidity compiler automatically
adds overflow and underflow checks to stack variables
before each mathematical computation to prevent overflow-
based attacks. These checks consume additional gas. To
avoid this gas consumption, Solidity allows programmers to
mark operations with the unchecked keyword to disable
the checks (e.g., line 10 in Figure . One execution of
an unchecked operation saves 191 gas units. As using
unchecked relaxes the security guarantee, it is intended
to be used only when programmers are certain that no
overflow or underflow could occur at the marked operation.
Please note that Solidity’s unchecked feature differs from
the checked and unchecked features in C#. In C#, over-
flow checks are not performed by default on most integral-
type arithmetic computations, and the unchecked keyword
is primarily used by programmers to indicate that overflows
in the enclosed computations are inconsequential.

12 stack-based gas wastes are about not enabling the
unchecked feature when possible. In four of the gas wastes,
the program semantic ensures that the result of an addition
is smaller than another number in the same type or another
addition result that has been checked for overflow (and
similarly, a subtraction result is bigger than another number
or the result has already been checked for underflow). In
such cases, the operation under examination does not need
to be checked and can be marked as unchecked but was
not, resulting in gas wastes. An example is illustrated in
Figure 2| The totalSupply field (line 2) holds the total
number of tokens among all addresses. balanceOf in line
3 is a map tracking the number of tokens for each address.
The addition in line 6 cannot overflow since the added value
is the number of tokens belonging to another address, and
adding it is still smaller than or equal to totalSupply.
Furthermore, the addition in line 12 does not overflow, since
it is smaller than the addition result in line 11, and line
12 can only be executed when line 11 passes the overflow
check.

For five other gas wastes, the programmers under-
stand the workload and are confident that certain compu-




1 library SafeMath {

2 - function mul (uint a, uint b) public returns (
uint) {

3 - uint ¢ = a * b;

4 + function mul (uint a, uint b) public returns (
uint c) {

5 + c =a * b;

6 return c;

7 +}

Fig. 4: A gas waste due to returning a local variable.

tations will not overflow, so they mark those operations
as unchecked. Identifying these inefficiencies relies on the
programmers’ in-depth knowledge of the contracts, making
it difficult to use static analysis to detect similar cases.

For the last three gas wastes, there are control flow
checks to guarantee when the program reaches a mathe-
matical operation, the values of the operands satisfy certain
conditions, and thus the operation cannot overflow or un-
derflow (e.g., line 10 in Figure ]).

Insight 1: Programmers miss many opportunities of leveraging
language features for trading security for lower gas.

Suggestion 1: Static analysis tools could be developed to help
programmers leverage program features at the development phase
or the testing phase.

Although Zou et al. [39] also report the need for pow-
erful tools for Solidity, their focus is primarily on security,
which differs from our perspective.

Using &¢& in if conditions. The EVM implements many op-
codes solely using the stack. For example, when evaluating
the “&&” operator in an if statement’s condition, it first
pushes the evaluation result (denoted as “c1”) of the left-
hand condition (e.g., “msg.sender!=from” in Figure [3)
onto the stack and then copies this result (denoted as “c2”)
onto the stack again. Subsequently, it consumes c2 by
checking whether it is true. If it is, c1 is popped before
evaluating the right-hand condition. If c2 is false, c1 is
checked again to decide whether to execute the if or
else branch. The copy, pop, and inspection of c1 are all
unnecessary and consume gas. This gas consumption can
be avoided by splitting an if statement with && into two
nested 1if statements. This saves 20 gas units when the first
logical expression evaluates to false. Four instances of gas
waste result from using && in an if statement’s condition.
One simplified instance and its patch are shown in Figure
Returning local variables in a function. Solidity allows devel-
opers to declare the return value (denoted as “retD”) of
a function in the function’s declaration. Programming in
this way saves gas compared to returning a local variable
(denoted as “retLocal”), which was also discussed in a
previous paper [84]. For example, line 6 in Figure 4| returns
a local variable c for the buggy code and it consumes more
gas than declaring c in the function’s declaration, illustrated
by the patch in line 4. Four gas wastes are due to using
“return retLocal”. The amount of saved gas for fixing
one such waste depends on the type of the return. For
example, 19 gas units are saved for an integer and 16 are
saved for a string.

Allocation in a loop. As discussed in Section Solidity re-
stricts direct access to only the top 16 words on the stack.

1 abstract contract ERC1155 {

2 function safeBatchTransferFrom(uint[] memory
ids, uint[] memory amounts) public {

3 uint len = ids.length;

4 + uint id;

5 + uint amount;

6 for (uint i = 0; i < len; i++) {

7 - uint id = ids[i];

8 - uint amount = amounts([i];

9 + id = ids[i];

10 + amount = amounts[i];

11 }

12 }}

Fig. 5: A gas waste due to allocating stack variables in a
loop.

To access other stack slots, Solidity must first remove some
elements from the stack. However, when there are many lo-
cal variables used in a nested manner, the Solidity compiler
may not find a way to generate code, resulting in a “stack
too deep” compiler error. To prevent such errors, Solidity
identifies unused local variables and deallocates them ear-
lier. For instance, Solidity removes a local variable from the
stack at the closing curly bracket of the code block declaring
the variable, instead of deallocating the variable at the end
of the function, like C/C++. Unfortunately, if the code block
is within a loop, continuously creating and deallocating a
local variable on the stack can lead to gas wastage. This
situation is different from CS1 in [84], where CS1 involves
assigning a new value to a variable in a loop without using
the new value in the loop. This root cause leads to two gas
wastes. Moving the allocation of a local variable outside the
loop saves 15 gas units per iteration. Figure [f| shows one
gas waste in this category where two local variables, id and
amount, are declared inside a loop and then popped out at
the end of each loop iteration. By relocating the declaration
site outside the loop, the allocation and deallocation of these
variables occur just once, resulting in a reduction in gas
usage.

Other causes. Two gas wastes do not belong to the above
cases. One is related to bit shifting. In Solidity, a bytes32
number is 32 bytes long, and an address is 20 bytes.
This gas-inefficient code left-shifts a bytes32 number by
12 bytes and extracts the most-significant 20 bytes as an ad-
dress, consuming 31 more gas units than necessary, since the
same result can be gained by extracting the least-significant
20 bytes directly. The final gas waste is about replacing
“a!=b” with “a<b”, since “!=" is implemented with two
opcodes and thus consumes more gas. The operand “b”
in the original program is the largest uint256 number.
Thus, “a>b” can never happen, allowing the statement to
be reduced to “a<b”.

Insight 2: As EVM does not have registers, the implementation
of many traditional types of operations in Solidity implicitly uses
stack. Programmers are easy to overlook such usage, causing gas
wastes.

3.2.2 Memory

Four gas wastes are in the memory category. Three wastes
are caused by reading a loop-invariant object field inside
a loop, and the object is on the memory. For example,



1 contract ConsiderationPure is ConsiderationBase {

2 function _applyRslv (Orders[] memory orders)
public {

3 - for (uint i = 0; i < orders.length; ++i) {

4 + uint arraySize = orders.length;

5 + for (uint i = 0; i < arraySize; ++i) {

6 }

7 +}

Fig. 6: A gas waste due to reading a loop-invariant memory
object field in a loop.

orders.length in line 3 of Figure@is a field of a memory
object, and it is read in each loop iteration without being
modified within the loop. Wastes in this type are fixed by
caching the field in a stack variable and reading the stack
variable in the loop instead of reading the field. Caching
a memory object field saves around 3 gas units for each
loop iteration. This optimization is specific to Solidity, as
the amount of gas spent is dependent on the store area.
The remaining gas waste is due to the use of mstore that
modifies 32 bytes when translating all letters in a string. For
every letter, the gas-inefficient code left-shifts the translated
letter to the right-most byte location of a 32-byte word before
using mstore to write the 32-byte word to the memory. To
save gas, using mstore8 to update one byte at a time can
eliminate the left-shift operation.

Insight 3: There are fewer memory-related gas wastes than other
types likely because memory and its relationship to stack are
similar to traditional heap and thus more familiar to programmers
than other data-store types.

3.2.3 Storage

Among the four store areas, storage incurs the highest
cost. Consequently, gas wastes resulting from the improper
utilization of data on the storage are more likely to be
perceived and addressed. This category comprises 20 gas
wastes, ranking the second among the four store areas.
Repetitive reads to storage. 14 gas wastes stem from repetitive
access to the same storage slot. Among them, 12 involve
accessing a contract field, while the remaining two involve
accessing an input parameter stored on the storage. In-
struction sload is required to access storage data, and
each execution of it consumes more than 100 gas units.
Copying the data to either the stack or the memory and
then accessing the copied version significantly reduce the
gas usage, since accessing the stack or the memory once only
consumes two to three gas units. This situation is different
from CS10 in [84], as CS10 is about minimizing the amount
of data saved on the storage. Figure [I| shows one such
example. _bal [from] is read with an sload for the first
time in line 8, and it is read again by another s1oad inline 9.
A patch can store _bal [from] in a stack variable, replacing
the second sload with a read on the stack variable and
saving 217 gas units per execution.

Read-after-write to storage. Three gas wastes are caused by
writing a stack value to a contract field and subsequently
reading the same field without any modifications in be-
tween. For example, in Figure [/} owner is a contract field
that is assigned the value of the input parameter newOwner
in line 4 and read in line 5. As shown in the figure, the

1 abstract contract Auth {

2 address public owner;

3 function setOwner (address newOwner) public {
4 owner = newOwner;

5 - emit OwnerUpdated (owner) ;

6 + emit OwnerUpdated (newOwner) ;

7

H}

Fig. 7: A gas waste due to read-after-write to storage.

contract ReentrancyGuard {

- bool private reentrancylock =

+ uint256 private reentrancylock =

modifier nonReentrant () {
require (! reentrancyLock) ;

= reentrancylLock = true;

require (reentrancyGuardFree ==

i reentrancyLock = 2;

false;
1;

) i

7
reentrancyLock
reentrancyLock

H}

false;
1;

Fig. 8: A gas waste due to using a Boolean contract field.

read operation on the contract field owner in line 5 can
be replaced with reading the input parameter newOwner,
saving 103 gas units.

Insight 4: Specific patterns of reading and writing to storage
could always lead to extra gas.

Although Sorbo et al. [84] also report the gas wastes
due to consecutively writing a storage variable, their code
pattern requires the write is inside a loop, while we do not
have such a requirement.

Suggestion 2: Static analysis of storage reads and writes could
capture gas wastes and automatically fix them.

0-to-1 gas charge. Changing a zero to a non-zero value on
storage consumes 100X more gas than modifying non-zero
values, because the size of a zero value on blockchain is
also zero, but a piece of non-zero data occupies 256 bits.
While changing from zero to non-zero is unavoidable for
regular values, it could be avoided for Booleans. Chang-
ing a Boolean storage value from false to true implicitly
changes the storage slot from 0 to 1. If uint256 is used
and 1 and 2 are used to represent false and true, one
could avoid this high gas consumption and save 22242
gas units for one execution. For example, as shown by
Figure [8) reentrancyLock is a Boolean contract field in
the buggy version, and line 6 updates it from 0 to 1,
resulting in significant gas consumption. The patch modifies
reentrancyLock to an integer, replacing true and false
with 2 and 1, respectively, in order to reduce gas usage.

Three gas wastes are caused by this Boolean usage and
fixed with the above strategy. Importantly, it is not advisable
to convert all Boolean contract fields into uint256. When
a Boolean field is packed with other fields in the same
storage slot, all of them only consume one 256-bit storage
slot. Changing the Boolean to uint256 increases storage
size, potentially incurring more cost when deploying the
contract.

Insight 5: The gas-cost model can be tricky, requiring careful
consideration to find the best way to write code.



abstract contract ERC1155 ({

mapping (address => mapping (uint256 => uint256))

public balanceOf;

3 function safeBatchTransferFrom (
4 address from, address to,
5 - uint256[] memory ids,
6 - uint256[] memory amounts,
7 + uint256[] calldata ids,
8 + uint256[] calldata amounts,
9 ) external {
10 uint256 idsLength =
11 uint256 id;
12 uint256 amount;
13
14
15
16
17
18

N =

ids.length;

for (uint256 i = 0;
id = ids[i];
amount = amounts[i];
balanceOf[from] [id] -= amount;
balanceOf [to] [id] += amount;

I8

i < idsLength; ++i) {

Fig. 9: A function whose parameters can be from memory to
calldata.

3.2.4 Calldata

Six gas wastes are caused by incorrectly labeling function
arguments or returns as memory instead of calldata.
Among these, four gas wastes arise when labeling a read-
only argument of an external function as memory. External
functions can only be invoked from functions in a dif-
ferent contract, and the argument resides in the calldata
at the beginning of the invocation. Using memory results
in unnecessary copying of the argument from calldata to
memory when entering the function, which wastes gas,
since the argument can be directly read from calldata. For
example, changing an array parameter with 100 elements
from memory to calldata saves 23182 gas units. Figure [9]
illustrates a gas waste caused by this issue. The parameters
ids and amounts are only read within the external func-
tion safeBatchTransferFrom, so that their labels can be
changed from memory to calldata to optimize gas usage.

Similarly, if an internal function is only invoked with a
real parameter from the calldata for an argument, and the
function does not modify the argument, then the argument
can be labeled as calldata. Moreover, if a function returns
a piece of data from the calldata, and that return is read-
only for its callers, the return value can be labeled as
calldata. Failing to label an internal function’s argument
and a function’s return as calldata causes two gas wastes,
respectively.

Insight 6: The failure of using calldata causes gas wastes,
likely as a result of programmers’ unfamiliarity with the new
calldata type in Solidity but not in traditional languages.
Suggestion 3: Static analysis of function arguments and returns
can avoid calldata-related gas wastes.

GasSaver [21] detects function parameters that can be
changed from memory to calldata, thus implementing
this suggestion. However, as shown by the evaluation re-
sults in Section 5} GasSaver does not cover all gas wastes in
this category, highlighting the necessity of our study.

3.3 Why Not Optimized

As shown in Table 2} we categorize the reasons for the
escape of the gas wastes from the optimization process into
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three groups. We tackle wastes in different groups with
distinct policies to complement the optimization process in
Section 5

Lack of compiler optimizations. Approximately 60% of the gas
wastes are attributed to the Solidity compiler’s lack of
specific optimizations, including all wastes on the memory,
the storage, and the calldata. For instance, the compiler does
not check if two sload operations access the same storage
slot and if the slot is written to between the two sloads. As
a result, it misses opportunities to optimize repeated reads
on the same storage location. Additionally, there are two
instances of stack wastes in this category: the compiler fails
to optimize left-shifting and extracting the most significant
bytes to obtain the least significant bytes, and it does not
replace “a!=b” with “a<b”, when b is the largest uint256
number.

Trading gas usages for other properties. The compiler deliber-
ately generates gas-inefficient opcodes for 14 stack wastes
to trade off runtime gas consumption for improved contract
reliability. Those wastes are due to the unique language
features of Solidity. 12 of them occur because the compiler
conservatively adds overflow or underflow checks before
mathematical operations that cannot overflow or underflow.
The remaining two result from the repeated allocation and
deallocation of stack variables within a loop, rather than
freeing all stack variables only once at the end of the
function, to prevent the “stack too deep” error.
Implementation Issues. Eight stack wastes result from im-
plementation issues in the Solidity compiler. Four wastes
where && is used in an if’s condition are due to the
compiler evaluating i f conditions in a standalone function
and determining whether to execute the if or else branch
in another function. This approach prevents the common
practice of using the result of the first logical expression to
decide both whether to evaluate the second logical expres-
sion and which branch to take. In the four wastes due to
returning retLocal, the compiler copies retLocal to the
stack slot representing the return value instead of returning
retLocal directly.

Insight 7:  Stack operations are complex, and even Solidity
compiler developers can make mistakes on them when making
design trade-offs and implementing the compiler.

3.4 Fixing Strategies

We divide the gas wastes’ fixing strategies into four groups.
Changing store areas. A total of 26 gas wastes are fixed by
making changes to the store area for the gas-inefficient code’
manipulated data. Out of these, 17 gas wastes are resolved
by replacing the accesses to storage data with accesses to
stack or memory data. All six gas wastes that resulted
from failing to label a memory argument as calldata are
fixed by modifying the respective arguments’ labels. Lastly,
the three gas wastes arising from accessing loop-invariant
memory data are resolved by moving the data to the stack.
Changing stack operations. Nine gas wastes are patched by
changing the way of implementing semantics with stack
operations. They are the gas wastes caused by && in if con-
ditions, returning local variables “retLocal”, and stack-
variable allocation in loops, as explained in Section [3.2.1}
Their fixes are using nested if statements, changing func-
tion returns to “retD”, and moving allocation outside loops.




Eliminating computation. 15 gas wastes are resolved by elim-
inating computation. Among these, 12 gas wastes are fixed
by adding the unchecked tag to computation for avoiding
compiler overflow /underflow checks (e.g., Figure[2). For the
remaining three gas wastes, one is fixed by avoiding a left-
shift operation and directly extracting the corresponding
bits, one is fixed by replacing the two-opcode operation
“a!=b” with the single-opcode operation “a<b”, and the
last waste is fixed by using mstore8 to replace mstore to
avoid left-shift operations when modifying each letter in a
string.

Others. Four gas wastes fall outside the scope of the pre-
vious categories, including three wastes fixed by replacing
Boolean contract fields with uint256 contract fields, and
the final waste fixed by implementing a smart algorithm to
compute an if condition that involved the “&&” operator.
Insight 8: Most of the gas wastes caused by misuse of memory,
storage, and calldata are resolved by modifying store areas. Differ-
ently, stack-related gas wastes are fixed by changing or eliminat-
ing stack-related operations. This indicates that non-stack-related
wastes could more easily be automatically fixed.

4 GAS WASTES IN ON-CHAIN TRACES

Section [3| examines gas wastes fixed by programmers in
real open-source Solidity projects. However, some wastes
may have gone unnoticed by developers and, consequently,
remain unresolved in Solidity programs. To identify and
investigate these overlooked wastes, we analyze Ethereum
execution traces in this section.

4.1 Methodology

We gather on-chain Ethereum transaction traces using the
debug API of Geth, an Ethereum execution client [85]. The
API returns a sequence of opcodes executed by each trans-
action. For each opcode, the API provides details such as the
gas consumed, the contents of the stack and calldata before
executing the opcode, and the contents of the memory and
storage after executing the opcode. We also infer operand
values from the values at the top of the stack.

Overall, we analyze all 10,629,589 successful transactions
executed on Ethereum between Feb 1st, 2024, and Feb 10th,
2024. These transactions span 71,234 blocks, consume 768.8
billion gas units, and incur more than $160 million in gas
fee] As the number of blocks and executed transactions
remain relatively stable across days, ten days’ data is ample
for our study, especially given the large number of transac-
tions.

We use a methodology similar to the one in Section [3|to
identify and categorize gas wastes. Specifically, we manu-
ally examine the opcodes executed in various store areas
to identify gas-inefficient opcode sequences (gas wastes)
and analyze why the compiler cannot optimize them. We
particularly focus on frequently executed sequences [86]
and sequences whose execution does not generate any
side effects. The former offers large optimization rewards,
while the latter indicates optimization opportunities [16].
We implement Python scripts to identify these two types
of sequences, each with fewer than 20 opcodes. We then

2. An Ether is $3,659 and a gas unit is 56.89 Gwei in our measurement.
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manually examine the top 100 sequences based on their fre-
quencies observed in the traces. Since the gas wates studied
in this section have not been addressed by programmers,
we do not consider fix strategies here.

4.2 Runtime Gas Wastes

Based on the collected transaction traces, storage opcodes
account for the majority of gas expenditure at 64.4%. Al-
though stack operations are individually inexpensive, their
high frequency causes stack opcodes to represent 34.1% of
gas usage. Gas consumption for both memory and calldata
is minimal, contributing less than 1% of the total gas usage.
Given these results, we focus our analysis on storage and
stack opcodes and omit the analysis of memory and calldata.

4.2.1 Storage

The opcodes sstore and sload are used to write and read
a storage slot, respectively. They rank first and second in
gas consumption among all opcodes, accounting for 40.67%
and 23.72% of total gas consumption, respectively. A signif-
icantly higher amount of gas is charged by Ethereum for a
sstore when it transitions a storage slot from zero to a non-
zero value. We observe that 19.96% of gas is spent on those
initialization operations. Similar to a suggestion given by
[38], we recommend programmers carefully design contract
logic to reuse storage space or move some contract states
off-chain to reduce storage usage.

Skippable s1oad. We identified a gas waste involving an
sload whose result is not used and is subsequently popped
from the stack. Thus, the sload can be skipped. This waste
occurs when resizing a dynamic array. If the array length is
less than 32 bytes, both the length and the array data are
stored in one storage slot; otherwise, they are in separate
slots. The compiler reads the slot with the length using an
sload, extracts the length, and leaves it on the stack. Later,
it reads the slot again with another s1oad for the array data
and compares the length on the stack with 32 to decide if the
second sload’s result contains the data. If the length is 32
bytes or more, the result is discarded. Clearly, the compiler
should generate the opcode for the second sload after the
opcodes comparing the array length with 32. Thus compiler
implementation issue causes the waste.

Insight 9: Implementation issues in the Solidity compiler can
cause unnecessary storage operations, leading to wasted gas.

4.2.2 Stack

The EVM stores all operands and computation results on
the stack, causing the top 10 most frequently used opcodes
being stack opcodes. We further observe that there are
long sequences of stack opcodes. The longest one contains
350,035 stack opcodes. Additionally, 15.68% of stack op-
codes are part of a sequence with 100 stack opcodes or
more. Since these sequences are computations independent
of contract states, they have the potential to be replaced with
off-chain computations to save gas.
Insight 10:  Lengthy stack-only computations are prevalent,
suggesting opportunities of contract refactoring to relocate these
computations off-chain for reduced gas usage.

In addition to the wastes discussed in Section [3.2.1
we identify 13 more wastes by analyzing stack opcode
sequences.



Runtime Constant Computation. Nine wastes involve per-
forming mathematical computations on constants at run-
time instead of calculating the results during compilation
and using the precomputed results at runtime. One se-
quence casts the number on top of the stack to an address.
Since an address is 20 bytes long, the sequence pushes 0x1,
0x1,and 0xa0 onto the stack, uses shl and sub to compute
2161 — 1, and employs 2'%1 —1 to extract the least significant
20 bytes from the top value on the stack. This sequence is
intentionally generated by the compiler because 26! — 1
occupies more space than the sequence itself. Using the
sequence rather than the constant reduces the gas cost when
deploying contracts. Additionally, contract programmers
can set the value of “~-optimize-runs” when compiling
a contract to balance runtime gas cost against deployment
gas cost. If this parameter is set to a value larger than 200,
indicating the contract is expected to execute more than
200 times, 2% — 1 will be used in the compiled opcodes.
However, we find contracts using the sequence execute one
million times, indicating that programmers do not always
make the optimal configuration.

For eight wastes, the compiler pushes a constant (e.g.,
zero) onto the stack and then performs operations (e.g.,
right-shifting) on the constant. Those operations can be
skipped without altering the program semantics. These gas-
inefficient sequences can be removed by making modifica-
tions to the compiler’s implementation. Thus, we consider
these wastes to be due to issues in the compiler’s implemen-
tation.

Used Stack Variables. The remaining four wastes arise from
generating a value on the stack using push or dup. How-
ever, these values are not utilized by subsequent opcodes
and are eventually popped out from the stack. This situation
is akin to duplicating c1 to have c2 on the stack, only to
later pop c1 from the stack in scenarios where && is used in
an if statement’s condition. Similarly, we consider the four
wastes to be caused by compiler implementation errors.
Insight 11: Stack wastes due to compiler issues widely exist, and
many of them may not be noticed by the programmers.
Suggestion 4: Efforts are needed to identify implementation
issues in the Solidity compiler, particularly those affecting opcode
generation for stack manipulation, to prevent further gas wastage.

Zou et al. [39] also highlight the importance of identify-
ing and addressing issues in the Solidity compiler, but their
focus is on security vulnerabilities caused by the compiler,
rather than gas wastes.

5 GAS WASTE RESOLVING

We employ different strategies to address the gas wastes
in different categories. For wastes caused by a lack of opti-
mizations or by trading runtime gas usage for other prop-
erties, we build a static detection tool suite called PeCatch
to detect similar wastes in contract source code. Contract
programmers can refer to the fixing strategies suggested in
this section to patch the detected wastes before deploying
their contracts. While we acknowledge that automatically
fixing detected wastes would be beneficial, developing such
a technique is outside the scope of this paper. For wastes
caused by compiler implementation errors, we identify the
errors in the compiler’s source code and report them to
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the Solidity team. Fixing these errors in the compiler will
automatically benefit all contract programmers.

5.1 PeCatch: Detecting Gas Wastes in Source Code

PeCatch comprises six distinct checkers, each crafted based
on a gas-waste pattern in Section (3| These checkers detect
gas wastes across all four store areas.

5.1.1 Stack

There are two checkers in this category. The first iden-
tifies mathematical computations free from overflow or
underflow issues (Uncheck), and thus can be labeled as
unchecked. The high-level idea is to identify a pair of inte-
gers (a, b), where it can be guaranteed (through static anal-
ysis) that a is always greater than or equal to b throughout
the whole program. If a (b) has been checked for overflow
(underflow), then an addition (subtraction) to b (a) cannot
overflow (underflow) and can be marked as unchecked.

We analyze the entire contract when both a and b are
contract fields, and one single function when both a and
b are local variables of the function. We take three steps for
each scenario: identifying candidate pairs, filtering out pairs
where a > b is not ensured, and pinpointing computations
that can be marked as unchecked.

We consider a and b as a candidate pair if they both
belong to the same integer type. Additionally, we permit b
to be a collection (e.g., mapping) and represent the value of
b as the sum of all its elements, as if we can safely infer
that the whole collection of b is no larger than a and a
cannot overflow, then any element of b cannot overflow.
We then filter out candidates where the condition a > b
is not guaranteed. When dealing with contract fields, this
filtering begins by examining the initial values of a and b
at the contract’s constructor. For local variables, the filtering
inspects the initial values of a and b inside the function.
We only consider a-b pairs where both are initialized to
constant values and a’s initial constant value is no smaller
than b’s. Next, we examine each modification made to a
or b within the contract (or within the function). If k is
added to b, we verify whether k is added to a in the same
function and whether k’s value stays the same across the
two additions. This involves inspecting whether such an
addition operation exists and whether it either precedes and
dominates the addition on b or succeeds and post-dominates
the addition on b. For example, val is added to an element
of balanceOf in line 12 in Figure 2} which is preceded and
dominated by the addition of val to totalSupply in line
11. Similarly, if c is subtracted from a, we check whether c
is subtracted from b in the same function. In the case where
b is a collection, if ¢ is subtracted from one of its elements
and added to another element, the relationship between a
and the sum of elements in b remains unchanged (e.g., lines
5 — 6 in Figure [2). After the filtering process, we identify
all additions to b (e.g., lines 6 and 12 in Figure [2) and all
subtractions from a as non-overflowable computations.

Moreover, the checker detects two extra cases with
control-flow information. First, if a value is subtracted from
a variable after checking the variable is not smaller than
the value (through an if check), the subtraction cannot
underflow (e.g., line 10 in Figure [I). Second, for a loop
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TABLE 3: Detected Gas Wastes. (x: x real gas wastes and y false positives. SL: Slither, PO: python-solidity-optimizer, GS:

GasSaver, and MM: MadMax. “-": zero detection.)

PeCatch
Uncheck | Alloc-Loop | Loop-Inv | Re-Sload [ Bool [ Calldata [ Total SL | PO | GS | MM | solc | LLVM
OpenZeppelin 280 220 230 50 1o 600 1399 31 Og 531 - - 23
Uniswap V3 - 20 10 50 - - 80 - 01 - - 1 1
uniswap-lib - 40 - - - - 49 - 29 - - - -
solmate - - 20 - - - 20 - - - - - 2
Seaport - 429 30 30 - 20 500 - - 20 - 3
SeaDrop - 1() - 10 1() 20 50 - - 21 - -
V3-Periphery - 360 9% 9 - 50 599 14 23 60 - - 9
V2—Periphery - 240 4() - - 4() 320 4() - 01 - - 4
Uniswap V2 - - - 30 - - 30 - - - - 2 -
Total 28¢ 1319 42¢ 260 20 730 3020 85 419 633 - 5 42

whose iteration number is less than a loop-invariant value,
the operation adding one to the loop-index variable cannot
overflow.

The fixing strategy involves marking all identified non-
overflow computations as unchecked. This approach pre-
serves the original semantics because either: 1) the identified
computation can never overflow or underflow in any exe-
cution, or 2) if the computation does overflow or underflow,
the program triggers an exception due to a check performed
on a related computation. For example, given that a > b, for
an identified calculation like b + k, our algorithm ensures
that a related computation, a + k, within the same function
is always checked. If b+ k overflows, an overflow exception
must be triggered by a + k.

The remaining checker identifies cases where a stack
variable is declared inside a loop (Alloc-Loop). Its imple-
mentation is relatively simple, so we’ll skip the detailed
descriptions here. The fix strategy is to move the variable
declarations outside the loop, as illustrated in Figure E}

5.1.2 Memory

One checker in this category detects loop-invariant reads
inside a loop, by first identifying reads reading the same
address in different loop iterations and then filtering out
cases where a write is performed on the address in the loop
(Loop-Inv). We only report reads whose memory slots are on
the storage, the calldata, or the memory. The recommended
fix for these wastes is to store the read result on the stack
outside the loop and read the stack variable instead inside
the loop, as illustrated in Figure [6}

5.1.3 Storage

Two checkers aim to pinpoint gas wastes caused by mis-
using the storage area. The first checker identifies Boolean
contract fields that occupy an entire storage slot (Bool-Field).
When such a Boolean field is changed from false to true,
it incurs a gas cost of more than 10K. However, we cannot
blindly report every Boolean field, since some Boolean fields
may be packed together with adjacent fields into one storage
slot. Instead, given a contract, we first analyze all its fields
and fields from inherited contracts following their declara-
tion order to determine whether each field shares storage
slots with its adjacent fields. We then report Boolean fields
occupying an entire storage slot. As discussed in Section
to patch these wastes, we can convert each detected field to
uint256 and use 1 and 2 to represent false and true,
respectively. One such patch example is shown in Figure

The second checker pinpoints instances where reading a
storage variable with sload could be avoided by utilizing
a stack variable (Re-Sload). Specifically, we target two gas-
inefficient code patterns: 1) two consecutive reads are made
on the same storage variable without any writes to the
variable in between; and 2) a write to a storage variable
is followed by a read on the same variable. In both cases,
the second read to the storage could be avoided by storing
the data on the stack, as shown by Figure [/} We perform live
variable read /write analysis to detect these two patterns.

5.1.4 Calldata

One checker detects instances (e.g., Figure [0) where a
memory function argument can be changed to calldata to
save gas (Calldata). We consider both functions only accessed
from outside the contract, and functions called by functions
within the same contract. For each formal parameter labeled
as memory, we inspect whether the function modifies its
memory area. If the function is called by any function
within the same contract, we further inspect whether the
corresponding real parameter is on the calldata. We perform
an iterative inspection on all functions, until we no longer
find any parameters that can be changed to calldata.

5.2 PeCatch Evaluation
5.2.1 Methodology

We implement PeCatch using static analysis framework
Slither [19]. Slither takes Solidity source code as its input
and converts it into SSA form, aiding researchers in building
static detectors for bugs and vulnerabilities. In sum, PeCatch
contains 2065 lines of Python code, encompassing static
analysis routines utilized by various checkers (e.g., identi-
fying loops), as well as waste detection algorithms tailored
for each checker.

Benchmarks. Besides the programs discussed in Section
we further include four additional Solidity programs in our
evaluation to ensure our checkers can gas wastes beyond
the examined applications. We focus on programs that are
mature, with a long commit history, popular (evidenced
by a significant number of GitHub stars), and widely used
within the community. For example, Uniswap V2 has over
3.1K stars on GitHub and has been forked more than
3.1K times. Moreover, the source code size of the selected
programs ranges from 424 lines to 4,053 lines, which is
comparable to the programs previously studied. We believe
these nine benchmarks are sufficient to evaluate PeCatch,




as they collectively contain 36,892 lines of source code and
584 contracts, providing a statistically confident basis for
evaluation, and reflect common use cases of the Solidity
programming language. Table [3] lists all the benchmarks
used in our experiments.

Research Questions. We aim to answer the following research
questions:

o Effectiveness: How well does PeCatch perform in de-
tecting previously unknown gas wastes in real-world
Solidity programs?

e Benefits: How much gas can be saved by fixing the
detected wastes?

o Coverage: What percentage of real-world gas wastes can
PeCatch identify?

Specifically, we run PeCatch on the latest versions of the
selected programs, counting the number of detected gas
wastes and false positives to assess its effectiveness. We
manually patch the detected wastes and execute all unit
tests in the benchmark programs to measure the amount of
gas and gas fees saved. Since the exact number of gas wastes
in the latest benchmark versions is unknown, we cannot use
them to evaluate PeCatch’s coverage. Therefore, we rely on
the wastes analyzed in Section 8] We manually inspect these
wastes and count how many of them PeCatch can identify
to assess its coverage.

Baseline Techniques. We compare PeCatch with six baseline
techniques, including four static gas-waste detection tech-
niques: Slither [19], python-solidity-optimizer [20], Gas-
Saver [21], and MadMax [22] (referred to as SL, PO, GS, and
MM, respectively); and two compiler optimization suites:
the Solidity compiler (solc) [24] and LLVM compiler op-
timizations [23]. Due to compatibility issues, the original
code of MadMax cannot work on recent Solidity programs.
Thus, we reimplement its detection algorithms using Slither.
Furthermore, since LLVM does not support Solidity, we
carefully review LLVM’s documentation to understand the
compiler optimization algorithms it employs. For promising
algorithms, we conduct a deep inspection of their imple-
mentation to assess whether each gas waste detected by
PeCatch could be pinpointed. Additionally, we run solc
on each gas waste identified by PeCatch and examine the
assembly code after optimization to determine whether solc
can identify the waste.

Experimental Setting. All our experiments are conducted on a
Mac Pro Notebook, with an Intel Core i7 CPU, 16 GB RAM,
and MacOS Ventura 13.4.1 (¢).

5.2.2 Effectiveness

As shown in Table [3] PeCatch reports 302 suspicious code
sites. We carefully examine these sites and confirm all of
them are previously unknown gas wastes, with 203 from
the five studied programs and 99 from the four additional
programs. Our assessment involves checking whether each
code site follows the corresponding code pattern of the
checker, assessing whether we can design a patch that effec-
tively reduces gas consumption, and validating the results
of all available unit tests.

Each of our checkers detects some previously unknown
gas wastes. Among them, Alloc-Loop pinpoints the most
gas wastes, uncovering 131 wastes from seven benchmark
programs. The potential reason is that programmers may
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be unaware that the Solidity compiler does not optimize
allocations inside loops as traditional programming lan-
guage compilers do. Bool-Field detects fewest gas wastes,
pinpointing only two instances from OpenZeppelin and
SeaDrop.

Gas Waste Reporting. We try our best to report the detected
gas wastes to the programmers. For 63 of the detected
wastes, the buggy code sites were removed due to code
refactoring that occurred before we completed our exper-
iments. As a result, we did not report these wastes. We
created pull requests for all other 239 gas wastes and
submitted the pull requests to the corresponding GitHub
repositories. So far, programmers have fixed eight of them
and mentioned that they plan to address another 32 in future
versions. For 56 of the reported wastes, the programmers
have confirmed the buggy code snippets indeed consume
more gas than our proposed patches. However, they decide
not to merge our pull requests. This includes six cases where
our pull requests are approved by at least one program-
mer but have not been merged yet, 23 cases where the
programmers consider the gas savings to be marginal, 26
cases where they are concerned that code readability might
be negatively affected after adding unchecked, and one
case where the contract containing the waste is scheduled
to be deprecated. We have not received any responses from
programmers regarding the remaining 143 wastes.

Baseline Comparison. PeCatch detects 4.8 x to 75.5 X more
gas wastes than SL, PO, and GS, as shown in Table Unlike
these techniques, PeCatch targets gas-waste patterns related
to Solidity’s unique language features. Wastes following
these patterns are prevalent in real-world Solidity programs,
resulting in PeCatch’s higher detection capability. Even for
the same type, PeCatch identifies a greater quantity. For
instance, PeCatch, SL, and GS all attempt to pinpoint pa-
rameters that can be switched from memory to calldata.
However, PeCatch identifies 73 wastes, compared to just
four detected by SL and 58 detected by GS. PeCatch detects
more because it also considers functions called by another
function in the same contract. MM fails to pinpoint any
gas wastes, because MM focuses on contract fields that
are dynamic arrays, but dynamic arrays are rarely used as
contract fields in recent Solidity programs. Additionally, as
shown by the subscripts in Table |3} PeCatch reports zero
false positives across all programs. In contrast, SL, PO,
and GS all have false positives, with false-positive rates
(number of false positives over true positives) of 62.5%,
300%, and 4.8%, respectively. Those false positives are due
to inaccurate analysis algorithms, or the difficulty in fixing
the detected wastes.

Existing compiler optimization algorithms also fail to de-
tect most gas wastes identified by PeCatch. Solc’s algorithms
can optimize only five wastes resulting from consecutively
reading a contract field twice, without any intervening in-
structions. PeCatch’s Re-Sload not only identifies these five
wastes but also pinpoints an additional 21 wastes involving
more complex code. LLVM'’s algorithms identify 42 wastes
that are detected by PeCatch’s Loop-Inv. In sum, PeCatch is
much more effective than existing gas-waste detection techniques
and gas-optimization techniques.

Execution Time. We measure the execution time of PeCatch
on each program, by running each checker 10 times and




TABLE 4: Gas Waste Coverage. (“+8”: eight more gas wastes
can be resolved after fixing the compiler issues identified by us. SL:
Slither, PO: python-solidity-optimizer, GS: GasSaver, and MM:
MadMax. )

Root Cause Wastes Techniques
(Store Area) PeCatch [ SL [ PO [ GS [ MM | solc [ LLVM
Stack 24 7+38 0] 0 0 0 0 0
Memory 4 3 3 0 0 0 0 3
Storage 20 18 0 0 0 0 3 0
Calldata 6 5 50 5 0 0 0

[ Total [ 54 [3+8[8J0]5] 0737 3

summing up the average execution time of each checker.
Overall, it takes PeCatch from 4 seconds to 7 minutes to an-
alyze a benchmark program. Thus, PeCatch’s can potentially
be used during Solidity programmers’ daily development practice.

Answer to Effectiveness: PeCatch pinpoints a large
number of gas wastes in real Solidity programs within
a short time frame and reports zero false positives; it
outperforms existing techniques in both the quantity of
detected wastes and accuracy.

5.2.3 Benefits

We employ two methods to estimate the amount of gas
saved after fixing the detected wastes, along with their
monetary impact. Section [5.2.3]

The first method utilizes all the unit tests from the
programs listed in Table [3} We manually patch all detected
wastes using the fixing mechanisms outlined in Section
Fixing these wastes requires a basic understanding of Solid-
ity, and each patch takes approximately one to three minutes
to implement, as the fixing mechanisms are relatively sim-
ple. These are demonstrated in Figure [2| and Figures
After applying the fixes, we run all unit tests and compare
the gas usage between the original versions of the programs
and the versions with all wastes resolved. The gas usage is
reduced by 223,382 units in one single execution of all tests
for the patched versions. This reduction corresponds to a
cost savings of $46.51.

The second method leverages the transaction traces col-
lected in Section [ to analyze how frequently the gas-waste
patterns identified by PeCatch occur in practice. In the
beginning, we figure out the opcode sequences associated
with these gas-waste patterns. Then, we search for these
sequences within the transaction traces. In the end, we
calculate the potential gas savings if the wastes were fixed.
Overall, the gas saved represents 4.55% of the total gas
consumption, amounting to approximately $0.73 million per
day.

Answer to Benefits: Gas wastes covered by PeCatch
consume a significant amount of gas and result in
substantial financial costs in practice, making it highly
beneficial to resolve them.

5.24 Coverage

We use the gas wastes studied in the empirical study (Ta-
ble P) as the ground truth dataset. We manually examine
each waste and count how many can be detected by each
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technique to evaluate their coverage of gas wastes. As
shown in Table [} PeCatch detects 33 out of the 54 gas
wastes, demonstrating its robust coverage of real gas wastes as-
sociated with Solidity’s unique features. In contrast, the baseline
techniques detect significantly fewer gas wastes. Among the
baselines, SL identifies the most, but it can only detect eight
gas wastes. GS detects five wastes, which are associated
with memory function parameters that can be changed to
calldata. Each of the two compilers (solc and LLVM)
detects three wastes. The three wastes identified by solc
are caused by consecutive accesses to the same contract
field, while three wastes detected by LLVM are caused by
accessing the same memory location within a loop. PO,
based on traditional compiler optimization algorithms, and
MM, targeting gas wastes related to contract fields that are
dynamic arrays, fail to detect any gas wastes in our ground-
truth dataset.

PeCatch misses 21 wastes for the following reasons.
First, the Uncheck checker overlooks five wastes because
programmers rely on workload information to uncheck
the computations, which PeCatch is unaware of. Second,
the same checker misses two additional wastes due to its
limited effectiveness in path-condition analysis, causing it
to miss non-overflowable cases ensured by complex path
conditions. Third, Re-Sload misses two gas wastes as it does
not conduct inter-procedural analysis. Fourth, Calldata-Para
misses one waste as it fails to consider scenarios where a
return can be changed from memory to calldata. Fifth, we
consider using && in an i f’s condition and returning a local
variable are due to bugs in the Solidity compiler and do not
implement checkers for these cases. Lastly, PeCatch misses
the remaining three wastes because it does not consider
specific opcodes (e.g., mstore8) or particular values (e.g.,
type (uint256) .max) in Solidity. To avoid these misses,
we plan to extend PeCatch by conducting more complex
static analysis (e.g., interprocedural analysis, path-condition
analysis) and considering more Solidity language features
in its future versions.

Answer to Coverage: PeCatch is capable of detecting
a significant portion of gas wastes associated with
Solidity’s unique language features.

5.3

We design toy programs to reproduce the wastes due to
compiler implementation issues discussed in Section [3] and
Section [d] Then, we identify which part of the compiler
causes the issues and examine why the compiler program-
mers make the mistakes. Through this process, we identify
two compiler errors that cause gas wastes when using &&
in an if’s condition and when returning retLocal in
Section [3] and 13 errors for the 13 gas-inefficient opcode
sequences in Section E} However, one sequence in Section E]
involving the use of | | in an i £’s condition shares the same
compiler code as using && in an if’s condition. Thus, we
detect a total of 14 distinct compiler issues. We report all
of them to the Solidity team. However, the programmers
have decided not to address the issues, as all of them are
in the legacy pipeline, which is set to be replaced by the IR
pipeline.

Identifying Issues in the Solidity Compiler



Most of the issues (11 out of 14) arise from using a

generic function for various scenarios, missing optimization
opportunities for specific cases. An example of this is the
issue associated with using && in an if’s condition in
Section [3.3]
Gas Saving. Using the collected transaction traces, we esti-
mate that fixing these compiler errors would save approx-
imately $0.03 million in gas fees every day. This highlights
the monetary impact of the compiler issues.

6 LIMITATIONS AND DISCUSSION

Threats to Validity. Potential threats to validity include the
representativeness of the selected applications for both the
study and evaluation, the representativeness of the gas
wastes studied, and the methodology used in our gas-waste
study.

Regarding application representativeness, our study se-
lects five popular and widely used applications that are
representative of common use cases for the Solidity pro-
gramming language. However, there may be additional use
cases not covered. For the evaluation, we select four addi-
tional applications based on the same criteria. Although the
total evaluated applications contain 36,892 lines of source
code and 584 contracts, there may still be uncovered code
patterns, which could lead to potential false positives and
false negatives.

All of the gas wastes we studied are sourced from
GitHub commit history. We believe our collection method
captures all significant gas wastes reported through GitHub
issues, as any time a programmer addresses a reported
issue, a corresponding commit is made. However, since we
collect gas wastes through keyword searches, we acknowl-
edge that some gas wastes may have been fixed but not
documented using the relevant keywords, and therefore are
missed in our search. Additionally, some gas wastes may
not have been recognized by users or programmers, and
as a result, are not patched. While these unresolved bugs
may have different root causes than the fixed ones, we
believe they are likely less significant than the fixed bugs
included in our study. It is also possible that programmers
use findings from previous papers to prevent gas wastes in
certain old patterns from occurring again.

In terms of our examination methodology, we ana-
lyze the source code, textual descriptions, and discussions
among programmers for each gas waste. Each gas waste is
reviewed by at least two authors of the paper, both of whom
have substantial knowledge of Solidity. Any disagreements
are resolved through multiple rounds of discussion. How-
ever, we acknowledge that the results are influenced by our
personal expertise. Additionally, we did not measure the
initial degree of agreement between the two authors, which
means potential issues in the examination process may not
have been exposed.

Discussion. While manually fixing the wastes detected by
PeCatch does not require specialized knowledge, develop-
ing an automated technique to generate patches for the
identified wastes would be highly beneficial for PeCatch
users. We plan to build this technique in future work. Large
language models (LLMs) like ChatGPT have recently been
explored for tasks such as code generation and bug fixing.
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It is promising to apply LLMs to identify gas wastes and
optimize gas usage. However, LLMs are known to have
limitations in prompt length, so the input Solidity code must
be appropriately segmented. Additionally, LLMs may suffer
from hallucinations and are highly dependent on effective
prompting techniques. The gas wastes we studied can serve
as one-shot examples to help LLMs better understand the
issues and optimizations, thus reducing the likelihood of
hallucinations.

7 CONCLUSION

Facing the growing popularity of blockchain systems and
smart contracts, this paper presents an empirical study
on real-world gas wastes in Solidity smart contracts and
on-chain transaction traces. The study inspects three key
aspects: where gas wastes occur, why they are not optimized
away by the compiler, and their potential solutions, with
particular focus on gas wastes related to Solidity’s unique
language features. To demonstrate the utility of our find-
ings, we build a static gas-waste detection technique for
Solidity source code and identify implementation errors in
the Solidity compiler causing gas wastes. We anticipate this
research will enhance our understanding of gas wastes and
encourage further research and practical efforts to mitigate
them.
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