

Blog Post Extraction Using Title Finding
Linhai Song1, 2, Xueqi Cheng1, Yan Guo1, Bo Wu1, 2, Yu Wang1, 2

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing
2 Graduate School of the Chinese Academy of Sciences, Beijing

Abstract: With the development of Web2.0, web mining applications pay more attention to blog pages. In order

to prevent noises in blog pages from affecting the precision of web mining algorithms, it is very necessary to

acquire posts from blog pages correctly. In this paper, we propose a blog post extraction algorithm which uses

title finding. There are two stages in this algorithm. In the first stage, text nodes which indicate the title of the

post are found and used as the beginning of the post. We take a machine learning approach to realize this stage,

and employ SVM as classification model. *In the second stage, we find the end of the post. Two methods are

introduced in this stage, one uses VIPS segmentation results, and the other is based on hand-coded rules.

Experiments are conducted to see how we find titles and how we extract posts. Experimental results show that

our algorithm has ideal effects.

Keywords: Blog; Post; Title Finding; VIPS; SVM

1. Introduction

In this paper, we address the issue of extracting posts from blog pages.
Posts are content of blog pages and they are very useful information for web mining applications [1]

[2]. However, blog pages not only contain posts but also include some other noises, like blogrolls,
permalinks, comments, and trackbacks, and these noises may affect the precision of web mining
algorithms. In order to improve the performance of web mining systems, it is necessary to acquire
posts from blog pages.

Many traditional methods are employed to extract news from news pages. One of the most
common heuristic rules used to design these algorithms is text-to-link ratio [3] [4] [5]. But there are
two obvious differences between blog pages and news pages: firstly, blog pages may have comments,
and news extraction algorithms based on text-to-link ratio may not work well on differentiating
useless texts from content, so these methods are not suitable for blog pages; secondly, posts are
created by common users, many personalized factors are integrated into the design of blog pages, and
this fact causes it difficult to summarize new heuristic rules from content of posts.

Through the observation of blog pages’ structures, we find a common feature among blog pages:
each blog page has one or two text nodes which indicate the title of the post, and these text nodes
appear just before the post of the blog page. Based on this observation, we design a two-stage blog
post extraction algorithm:

* † Corresponding author.

Email addresses: songlinhai@software.ict.ac.cn (L. Song), cxq@ict.ac.cn (X. Cheng), guoy@ict.ac.cn (Y.

Guo), wubo@software.ict.ac.cn (B. Wu), wangyu2005@software.ict.ac.cn (Y. Wang).

mailto:songlinhai@software.ict.ac.cn
mailto:cxq@ict.ac.cn
mailto:guoy@ict.ac.cn
mailto:wubo@software.ict.ac.cn
mailto:wangyu2005@software.ict.ac.cn

In the first stage, we find text nodes which indicate the title of the post in each blog page, and use
these nodes as the beginning of the post. We take a machine learning approach to realize this stage.
We annotate title nodes in sample documents and take them as training data to train a classification
model. Then title extraction is performed by using this model. There are in total 88 features defined in
the model. As classification model, we employ SVM (Support Vector Machine).

In the second stage, we find the end of the post for each blog page. We propose two methods for
this stage. One is based on VIPS (a Vision-based Page Segmentation Algorithm) [6], and the other
uses hand-coded rules.

Post
Post

Fig.1 An example of English blog Fig.2 An example of Chinese blog

Figures 1 and 2 show examples of the problem we encounter. The parts marked Post are targets
which we want to extract in our work.

The rest of this paper is organized as follows. Section 2 describes the process of our algorithm.
Section 3 and Section 4 describe how we find the title and the end of the post in each blog page. How
we design our experiment and experimental results will be presented in Section 5. We then present
related work and conclude with a summary and what we will do in the future.

2. Process of algorithm

Figure 2 shows the process of our algorithm. Firstly, each input blog page is parsed and partitioned
into blocks. Both our Html Parser and VIPS module are developed using MS IE core. Feature
Extractor module picks up features which are used to find title nodes and changes these features into a
format which the SVM module can recognize. After finding title nodes, the trained SVM classifier
sends results to Post End Extractor module and Post Extractor module. There are two methods in Post
End Extractor module to find the end of the post: one is based on segmentation results of VIPS
module, and the other uses hand-coded rules. The post of the input page is finally extracted in Post
Extractor module according to title nodes and the end of posts.

Fig.3 Process of algorithm

3. Title finding

In the first stage of our blog post extraction algorithm, we need to find text nodes which indicate the
title of the post.

Fig.4 A page only with standardize title

Standard Title Standard Title

Personalized Title

Fig.5 A page with both standard title and personalized title

3.1. Title definition
In blog pages, there are two categories of text nodes which indicate titles of posts. The first category
of text nodes is created by blog management systems, and content of these nodes is based on titles
which blog owners submit to management systems when they publish their blogs. This kind of text
nodes appears in all blog pages, and we call them standard titles in our paper. A few noises, like tags
for posts, may appear between standard titles and posts.

The second category of text nodes which indicate titles of posts is created by blog owners, and blog
owners use this kind of nodes as the first parts of their posts. We call this kind of nodes personalized

titles in our paper. Personalized titles do not appear in all blog pages. In our data set, there are only
40.4% blog pages with personalized titles.

If a blog page has a personalized title, we use it as the beginning of the post. But if not, we use the
standard title as the beginning.
3.2. Model
Because the label for each text node is “title” or “not title”, we consider title finding stage as a
classification problem, and use the nonlinear support vector machine with Gaussian RBF kennel to
solve this problem.

In the concrete realization of this stage, we use open-source software libsvm [8]. During the
training process, we use cross-validation to prevent the over fitting problem and grid-search to
determine parameters.
3.3. Features

We consider various aspects of text nodes to design features for them.
Position features: One common sense is that both standard titles and personalized titles must be in

the first screen. So we don’t deal with text nodes not in the first screen and use the size of screen to
change absolute position features into relative position features.

Title features: According to web pages design specification, authors should explicitly specify the
title fields marked by “<title>” and “</title>”. We have reasons to believe that titles of posts are
related to title fields.

Block features: The features of blocks which text nodes belong to are got from VIPS module. We
also use the size of screen to change absolute spatial features of blocks into relative spatial features.

Appearance features: Titles may be conspicuous in terms of font family, font weight, font color,
font style, alignment and background color.

There are in total 88 features. After being normalized, the value of each feature is a double value
between 0 and 1. We could choose to change these double feature values into integers. But we have no
experience about how to consider which scale of feature values as equivalent and libsvm has the
ability to handle with double values, so we don’t do that. Table 1 shows the number of features for
each type.

Table 1 Distribution of feature types

Feature Type Number

Position Features 4

Title Features 4

Block Features 9

Appearance Features 20

Other 51

4. Post end finding

We have two methods to find the end of the post in each blog pages, one uses VIPS, and the other is
based on hand-coded rules. Effects of these two methods are compared in Section 5.
4.1. VIPS
VIPS is a method to segment a web page into blocks. By detecting useful visual cues based on DOM
tree, VIPS represent each input page into a block-tree. The root is the whole page, children nodes are
obtained by partitioning the parent node into finer blocks, and all leaf nodes consist of a flat
segmentation of the web page with an appropriate partitioning degree.

After observing the segmentation results of VIPS, we summarize two heuristic rules: there is only
one leaf node in the block-tree carrying posts, and personalized titles and posts must be in the same
leaf blocks. Based on these two rules, how we extract the post is shown as follows:

If we can get the personalized title for the input page, we use the leaf block which contains the
personalized title as the post. If we only get the standard title, we check leaf blocks in the block tree in
DFS order from the block containing the standard title, and use the first block with height higher than
a threshold as the post
4.2. Hand-coded rules
We summarize some key words, such as “Comments”, “Post by” and “Next page”. These words often
appear after ends of posts. All text nodes after standard titles or personalized titles are checked to see
if they contain these key words. If a short text node contains one of these key words, we use it as the
end of the post in the input page.

5. Experiment

We create two data sets to test how we find titles and how we extract posts. We collect blog pages
from 9 blog sits to establish data set I and we try our best to choose pages produced by different
templates. There are 160 blog pages in data set I and 45 pages have personalized titles.

Data set II is from our information system and we want to see how our algorithm supports our
actual application. We randomly select 120 blog pages from results of the crawler in our information
system. 68 blog pages in data set II have personalized titles.

Table 2 Distribution of feature types

Data sets Standard title Personalized title

I 160 45

II 120 68

5.1. Title finding Experiment
We use ‘precision’, ‘recall’ and ‘F1-score’ in evaluation of title finding. The results of the SVM
module are classification results of all text nodes, but we only consider the small part about title nodes.
Both standard titles and personalized titles are useful for post extraction, and we don’t distinguish
them apart in results analysis.

Table 3 Performance of title finding

Data sets Precision Recall F1-score

I 92.23% 90.48% 91.35%

II 96.77% 94.74% 95.74%

From the results shown in Table 3, we see that our classification model has good performance in

title finding, and it enables us to continue our post extraction algorithm.
In order to investigate the ability of domain adaptation of our title finding model, we conduct two

experiments. In the first experiment, we apply our title finding model trained with data set I to data set
II, and then we swap the train and test set to repeat this experiment. In the second experiment, we use
our model trained with pages from 5 blog sites in data set I to pages from the other 4 blog sites, and
then we swap train and test set to repeat the second experiment.

Table 4. Domain adaptation of title finding model

Training

sets

Testing

set
Precision Recall F1-score

I II 90.58% 92.02% 91.29%

II I 79.50% 92.68% 85.59%

5 sites 4 sites 88.89% 75.29% 81.53%

4 sites 5 sites 73.03% 92.50% 81.62%

From the results, we see that cross domain performance is obviously not good as that of within
domain in Table 3. Maybe after summarizing more domain independent features, we get construct a
domain independent model.

91.35%

46.23%

74.64%

90.53%

95.74%

50.94%

78.43%

85.86%

All

Pos

Ti

Pos+Ti

Second

First

Fig 6 Contribution of each feature type

We investigate the contribution of each type of features in title finding. We find that both Position
Features and Title Features are significant features, and other features just slightly improve the
performance of our model. The results indicate us that we may just use Position Features and Title
Features to establish a simpler model.

5.2. Post Extraction Experiment
We test post extraction on blog pages. We conduct string alignment between experiment results and
standard posts to calculate evaluation indexes.

Table 1. Performance of pose extraction

Methods
Testing

set
Precision Recall F1-score

VIPS first 94.34% 98.07% 96.17%

 VIPS second 92.40% 98.42% 95.32%

Hand-coded first 97.41% 90.18% 93.66%

Hand-coded second 97.67% 92.49% 95.01%

From results in Table 5, we see that the method using VIPS segmentation results has a high recall,

but a low precision, and the method based on hand-coded rules just does the opposite. Both of these
two methods have ideal effects.

6. Conclusion

In this paper, we propose a two-stage post extraction algorithm. The first stage is title finding, and the
second stage is post end extraction. We extract 88 double features for each text node and employ
SVM as classification module to realize the first stage. In the second stage, we propose two methods,
one uses VIPS, and the other is based on hand-coded rules. Experiment results show that both title
finding and post extraction have ideal effects.

Song et al. [7] investigated how to find a model to automatically assign importance values to blocks
provided by VIPS. This work inspires us to think whether we could design a content extraction
algorithm just using VIPS segmentation results. How to use VIPS more properly to get a powerful
content extraction algorithm is the work we will do in the future.

References

[1] N. S. Glance, M. Hurst and T. Tomokiyo, “BlogPulse: Automated Trend Discovery for Weblogs”, In
WWW’04: Proceedings of the 13th International Conference on World Wide Web, NY, USA.

[2] W. Liu, S. Tan, H. Xu and L, Wang, “Splog Filtering Based on Writing Consistency”, In WI’2008: 2008
IEEE/ WIC/ ACM International Conference on Web Intelligence, Sydney, Australia, December 9-12, 2008,
pp. 227-233.

[3] J. Prasad and A. Paepcke, “Coreex: content extraction from online news articles”, In CIKM’2008:
Proceedings of the 17th ACM Conference on Information and Knowledge Management, Napa Valley,
California, USA, October 26-30, 2008, pp.1391-1392.

[4] S. Gupta, G. Kailer, D. Neistadt, and P. Grimm, “DOM-based Content Extraction of HTML Documents”,
In WWW’03: Proceedings of the 12th International Conference on World Wide Web, Budapest, Hungary,
2003, pp.207-214.

[5] S. Gupta, G. K. Kaiser, P. Grimm, M. F. Chiang, and J. Starren, “Automating Content Extraction of HTML
Documents,” World Wide Web, 2005, vol. 8, pp. 179-224.

[6] D. Cai, S. Yu, J. Wen, and W. Ma, “Extracting Content Structure for Web Pages Based on Visual
Representation”, In APWeb2003: Web Technologies and Applications, 5th Asian-Pacific Web Conference,

Xian, China, April 23-25, 2002, pp. 406-417.
[7] R. Song, H. Liu, J. Wen and W. Ma, “Learning block importance models for web pages”, In WWW2004:

Proceedings of the 13th international conference on World Wide Web, New York, NY, USA, May 17-20,
2004, pp. 203-211.

[8] http://www.csie.ntu.edu.tw/~cjlin/libsvm/

	1. Introduction
	2. Process of algorithm
	3. Title finding
	3.1. Title definition
	3.2. Model
	3.3. Features

	4. Post end finding
	4.1. VIPS
	4.2. Hand-coded rules

	5. Experiment
	5.1. Title finding Experiment
	5.2. Post Extraction Experiment

	6. Conclusion
	References

