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Go is a popular statically-typed industrial programming language. To aid the type safe reuse of code, the

recent Go release (Go 1.18) published early 2022 includes bounded parametric polymorphism via generic types.
Go 1.18 implements generic types using a combination of monomorphisation and call-graph based dictionary-
passing called hybrid. This hybrid approach can be viewed as an optimised form of monomorphisation that

statically generates specialised methods and types based on possible instantiations. A monolithic dictionary

supplements information lost during monomorphisation, and is structured according to the program’s call

graph. Unfortunately, the hybrid approach still suffers from code bloat, poor compilation speed, and limited

code coverage.

In this paper we propose and formalise a new non-specialising call-site based dictionary-passing translation.

Our call-site based translation creates individual dictionaries for each type parameter, with dictionary con-

struction occurring in place of instantiation, overcoming the limitations of hybrid. We prove it correct using

a novel and general bisimulation up to technique. To better understand how different generics translation

approaches work in practice, we benchmark five translators, Go 1.18, two existing monomorphisation transla-

tors, our dictionary-passing translator, and an erasure translator. Our findings reveal several suggestions for

improvements for Go 1.18— specifically how to overcome the expressiveness limitations of generic Go and

improve compile time and compiled code size performance of Go 1.18.
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1 INTRODUCTION
Since its creation in 2009, the Go programming language has placed a key emphasis on simplicity,

safety, and efficiency. Based on the Stack Overflow [2021] survey, Go is the 5th most beloved

language, and is used to build large systems, e.g., Docker [2021], Kubernetes [2021], and gRPC

[2021]. The recent Go release (Go 1.18 released on the 15th of March 2022) added generics, which
∗
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has been considered Go’s most critical missing and long awaited feature by Go programmers and

developers [Merrick 2020]. The Go Team [2022], however, has posted that much work is still needed

to ensure that generics in Go are well-implemented.

The work on implementing generics in Go began in earnest with Griesemer et al. [2020], in which

they formalised two core calculi of (generic) Go; Featherweight Generic Go (FGG) and Featherweight

Go (FG), as well as formalising amonomorphisation translation from FGG to FG. Monomorphisation

statically explores a program’s call graph and generates multiple implementations of each generic

type and method according to each specialisation of that type, or method, required at runtime.

The Go team informally proposed three approaches; (1) Stencilling (monomorphisation) [Randall

2020c], (2) Call-graph dictionary-passing [Randall 2020a], and (3) GC shape stencilling (hybrid of

(1) and (2)) [Randall 2020b]. A monomorphisation-based source-to-source prototype (Go prototype

translator (go2go)) has been implemented by The Go Team [2021b], following the stencilling

proposal (1) and [Griesemer et al. 2020]. The current Go 1.18 implementation extends (3) [Randall

2022]. Unlike more traditional non-specialising dictionary approaches (e.g., dictionary-passing in
Haskell and vtables in C++), Go 1.18 uses an optimised form of monomorphisation to allow types in

the same GC shape group to share specialised method and type instances. In theory, all objects in a

GC shape group have an equivalent memory footprint and layout, although currently, Go 1.18 only

groups pointers. As multiple types may share the same GC shape group, their dictionaries provide

information lost during monomorphisation, e.g., concrete types and method pointers. Moreover,

Go 1.18 builds a monolithic dictionary based on the program’s call-graph. Monomorphisation has a

number of well-known limitations; it can substantially increase code size, it can be prohibitively slow

during compilation [Jones 1995; Stroustrup 1997], and it does not cover all programs [Griesemer

et al. 2020]. Concretely, there are two core limitations with all the Go team proposals (1–3), the

current Go 1.18 implementation, and the proposal of Griesemer et al. [2020].

1 type List[T Any] interface {

2 permute() List[List[T]]; insert(val T, i int) List[T];

3 map[R Any](func(T) R) List[R] ; len() int }

4 type Cons[T Any] struct { head T; tail List[T] }

5 type Nil[T Any] struct {}

6 func (this Cons[T]) permute() List[List[T]] {

7 if this.len() == 1 { return Cons{this, Nil{}}

8 } else {

9 return flatten(this.tail.permute().Map(

10 func(l List[T]) List[List[T]]{

11 var l_new List[List[T]] = Nil[List[T]]{}

12 for i := 0; i <= l.len(); i++ {

13 l_new = Cons{l.insert(this.head, i), l_new}

14 }

15 return l_new

16 }))}}

17 func (this Nil[T]) permute() List[List[T]] {

18 return Nil[List[T]]{}

19 }
Fig. 1. List permutation example

1) Non-monomorphisable programs. All

current implementations and proposals for

generics in Go suffer from the inability to

handle a class of programs that use recursive

instantiations, e.g., the list permutation exam-

ple
1
provided in Figure 1. This program can-

not be monomorphised, as a list of integers

List[int] has a permute method which re-

turns a list of type List[List[int]], which
in turn has a permute method that returns

type List[List[List[int]]], and on ad in-
finitum. Monomorphisation cannot explore

this infinite set of types in finite time, and so

cannot specialise a method for each instance.

2) Specialising translation. All currently re-
alised approaches to generics in Go are based

on method/type specialisation. This stands in contrast to the approaches taken by other lan-

guages with automatic memory management, such as Haskell, C#, and Java. Go uses garbage

collection for automatic memory management. In the top 16 statically typed languages with gener-

ics [Spectrum 2022], we find a constant theme; languages with automatic memory management

use non-specialising implementations such as dictionary-passing or erasure, and those without use

monomorphisation (see Appendix A for a breakdown of language implementations).

1
See [gitchander 2021] for an efficient but type unsafe implementation of list permutation.
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Challenges and contributions. We develop and implement a new non-specialising, call-site

dictionary-passing translation from Go with generics (FGG) to Go (FG), and prove its correctness.

We then create micro and real-world benchmarks for generic Go, and examine the trade-offs

between the different translations to suggest improvements for Go 1.18.

1) The first challenge is to design and build a non-specialising call-site dictionary-passing translation
for Go. Go’s distinctive structural subtyping adds an extra level of complexity that requires careful

consideration. Our first contribution in § 4 and § 6.1 is the formalisation and implementation of a

new dictionary-passing translation that is specifically designed for the unique qualities of Go.

2) The second challenge is to overcome the non-monomorphisability limitation of the current

implementations and translate previously untranslatable programs such as permute. A key aspect

of our dictionary design is call-site—each polymorphic type parameter is represented by its own

dictionary, which in turn is created at the call-site where that type parameter would have been

instantiated. This allows any well-formed FGG program to be translated.

3) The third challenge we meet is to establish semantic correctness of our translation. Historically,
dictionary-passing translations have been proven correct using value preservation [Sulzmann and

Wehr 2021; Yu 2004; Yu et al. 2004], an approach that cannot ensure termination preservation or

generalise to more advanced language features (e.g., concurrency in Go). We instead use a fine-

grained behavioural equivalence guided by the work of Igarashi et al. [1999]. Unfortunately, proving

the bisimulation result in [Griesemer et al. 2020, Theorem 5.4] is insufficient due to intermediate

states created by dictionary-passing. We propose a novel bisimulation up to dictionary resolution
reduction, and use this relation to prove that the translation preserves essential properties of the

source language (§ 5). This proof technique is general and translation-agnostic, and is useful in

other contexts where a standard bisimulation is inadequate.

4) The fourth challenge is to find an effective evaluation for implementations of generics in Go. We

compare the five implementations— (1) our call-site, non-specialising dictionary-passing translation;

(2) an erasure translation built by us for empirical evaluation; (3) a monomorphisation translation

by Griesemer et al. [2020]; (4) the initial source-to-source monomorphisation prototype translation

go2go by the Go team; and (5) Go 1.18 —along three dimensionalities; (1) complication time,

(2) translated code size, and (3) performance of compiled executables. As Go 1.18 was just released,

there currently exists no real-world Go program with generics. In § 6.2, we contribute a number of

benchmarks to overcome this deficit: we construct micro benchmarks to examine the effect of

different forms of complexity in generic programs; and reimplement the real-world benchmarks

from [Odersky et al. 2000; Ureche et al. 2013] in Go.

5) The final challenge is to examine the trade-offs between the different translations, which suggest
future improvements of Go 1.18. We observe, in general, that monomorphisation leads to better

execution performance, while non-specialisation (dictionary-passing) produces smaller executables

in less compilation time. We also observe that on the micro benchmarks our dictionary-passing

translation can generate programs that are comparable in efficiency to Go 1.18. Overall, our results

show that Go 1.18 has much scope for improvement and the usefulness of non-specialised call-site

dictionary-passing translations for languages such as Go. We provide concrete suggestions in § 6.4.

Outline. § 2 and § 3 summarise FG and FGG; § 4 proposes a new dictionary-passing translation;

§ 5 proves its semantic correctness; § 6 describes our implementations and measures the trade-

offs between the five translators; § 7 gives related work; and § 8 concludes. Proofs and omitted

definitions can be found in the Appendix to this paper. The dictionary-passing/erasure translators

and benchmarks are available in the artifact to this paper [Ellis et al. 2022a]. Source code is available

on GitHub [Ellis et al. 2022b] and Software Heritage [Ellis et al. 2022c].
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1 type Any interface {}

2 type Function interface { Apply(x Any) Any }

3 type Ord interface { Gt(x Ord) bool }

4 type List interface { Map(f Function) List }

5 type Nil struct {}

6 type Cons struct { head Any ; tail List }

7 func main() {

8 _ = Cons{1, Cons{7, Cons{3, Nil{}}}}

9 .Map(GtFunc{5})

10 .Map(GtFunc{5}) // PANIC

11 } // Unable to assert bool as type Ord

12 type GtFunc struct { val Ord }

13 func (this GtFunc) Apply(x Any) Any {

14 return this.val.Gt(x.(Ord)) //Gt needs an Ord arg

15 }

16 func (this int) Gt(x Ord) bool {

17 return x.(int) < this // < needs an int value

18 }

19 func (this Nil) Map(f Function) List { return Nil{} }

20 func (this Cons) Map(f Function) List {

21 return Cons{ f.Apply(this.head), this.tail.Map(f) }

22 }

Fig. 2. FG List example adapted from [Griesemer et al. 2020, Figures 1 & 3]

2 FEATHERWEIGHT GO
We briefly summarise the Featherweight Go (FG) language [Griesemer et al. 2020, § 3]; specifically

highlighting the key points related to dictionary translation.

2.1 Featherweight Go by Examples
FG is a core subset of the (non-generic) Go 1.16 language containing structures, interfaces, methods,
and type assertions. In FG, there are two kinds of named types; Interfaces (interface) specify a

collection of methods which any implementing type must also possess, and structures (struct)
which are data objects containing a fixed collection of typed fields.Methods are functions that apply
to a specific structure, called the method’s receiver. Finally, type assertions ask whether a structure

can be used as a specific type. If it cannot, then FG will produce a type assertion error.
In contrast to nominally typed languages, Go uses structural subtyping. As we shall see in § 4, it

is this distinctive feature that makes our dictionary-passing translation challenging and non-trivial.

In a nominally typed language, such as Java, one type implements (subtypes) another when it

explicitly declares such. In Go, we do not declare that one type implements another. Rather, one

type implements another precisely when it implements (at least) all of the prescribed methods.

Consider the example Go code in Figure 2, which simulates higher order functions, lists, and

mapping. For simplicity of presentation, we assume that there are primitive int and bool types
along with a < operation. The Any interface does not specify any methods; as such, all other types

are its subtypes, meaning that any object may be used when an Any is expected, but also that we

cannot apply any methods to an Any object without first asserting it to some more specific type –

an action which may fail at runtime.

The Function interface specifies a single method, which is given by the method signature
Apply(x Any) Any. Any structure implementing an Apply method that takes an argument of type

Any and returns a value, also of type Any, is said to implement the Function interface. Our example

code simulates the greater than function as a structure (GtFunc) containing a single Ord field. Its
Apply method then calls the Gt method provided by struct’s field. The Ord interface, however,

specifies that Gt should accept a single argument of type Ord. Before the Apply method of GtFunc
can call Gt it must, then, assert its argument to type Ord. If the argument does not implement Ord,
then a type assertion error occurs. We assume that only one implementation of Ord exists, that

being int, which itself uses a risky type assertion.

The example also includes a List interface specifying a Map method. We provide a cons list

implementation of List. In FG, there is a single top-level main function that acts as the program’s

entrance. Our program initially builds a simple three value int list on line 8, and then uses the

simulated greater than function (GtFunc) to map the list to a bool list. When, however, we attempt

to map this bool list using the same function, we encounter a runtime type assertion error on

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 168. Publication date: October 2022.
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Field name 𝑓 Type name 𝑡,𝑢 ::= 𝑡𝑆 | 𝑡𝐼 Expression 𝑒 ::=

Variable name 𝑥 Method name 𝑚 Method call 𝑒.𝑚 (𝑒)
Interface type name 𝑡𝐼 ,𝑢𝐼 Method signature 𝑀 ::= (𝑥 𝑡 ) 𝑡 Variable 𝑥

Structure type name 𝑡𝑆 ,𝑢𝑆 Method specification 𝑆 ::=𝑚𝑀 Type assertion 𝑒.(𝑡 )
Type literal 𝑇 ::= Declaration 𝐷 ::= Field select 𝑒.𝑓

Structure struct {𝑓 𝑡} Type decl type 𝑡 𝑇 Structure literal 𝑡𝑆{𝑒}

Interface interface {𝑆} Method decl func(𝑥 𝑡𝑆 ) 𝑚𝑀 {return𝑒}
Program 𝑃 ::= package main; 𝐷 func main(){_ = 𝑒}

Fig. 3. Syntax of Featherweight Go

Value 𝑣 ::= 𝑡𝑆{𝑣}
Evaluation context 𝐸 ::=

Hole □ Structure 𝑡𝑆{𝑣, 𝐸, 𝑒} Type assertion 𝐸.(𝑡 )
Select 𝐸.𝑓 Call receiver 𝐸.𝑚 (𝑒) Call arguments 𝑣.𝑚 (𝑣, 𝐸, 𝑒)

[r-fields]

(𝑓 𝑡 ) = fields (𝑡𝑆 )
𝑡𝑆{𝑣}.𝑓𝑖 −→ 𝑣𝑖

[r-call]

(𝑥 : 𝑡𝑆 , 𝑥 : 𝑡 ) .𝑒 = body (type (𝑣) .𝑚)
𝑣.𝑚 (𝑣) −→ 𝑒 [𝑥 := 𝑣, 𝑥 := 𝑣 ]

[r-assert]

type (𝑣) <: 𝑡
𝑣.(𝑡 ) −→ 𝑣

[r-context]

𝑒 −→ 𝑒′

𝐸 [𝑒 ] −→ 𝐸 [𝑒′]

type (𝑡𝑆{𝑣}) = 𝑡𝑆

(func (this 𝑡𝑆 ) 𝑚 (𝑥 𝑡 ) 𝑡 {return𝑒}) ∈ 𝐷

body (𝑡𝑆 .𝑚) = (𝑥 : 𝑡𝑆 , 𝑥 : 𝑡 ) .𝑒

(type 𝑡𝑆 struct {𝑓 𝑡}) ∈ 𝐷

fields (𝑡𝑆 ) = 𝑓 𝑡

Fig. 4. Reduction semantics of Featherweight Go

line 10. While we could catch this error at compile time by increasing the specificity of the Apply,
Gt, and Map functions using int and bool instead of Any, this would severely limit code reusability.

2.2 Featherweight Go Syntax and Semantics
Figure 3 presents the syntax of FG from [Griesemer et al. 2020]. We use the 𝑥 notation for a

sequences of 𝑥 , namely 𝑥0, 𝑥1, . . . , 𝑥𝑛 . A program (𝑃 ) is given by a sequence of declarations (𝐷)

along with amain function which acts as the top-level expression (𝑒). Shortened as 𝑃 = 𝐷 ⊲ 𝑒 .

FG is statically typed: all FG typing rules follow the Go 1.16 specification. If, in the variable-type

environment Γ, an expression 𝑒 is of type 𝑡 , then it satisfies the judgement Γ ⊢ 𝑒 : 𝑡 . We assume

that all programs 𝑃 are well-formed, written 𝑃 ok. Since the rules/notations are identical to those in

[Griesemer et al. 2020], we omit them here, but provide definitions and details in Appendix B.

Figure 4 presents the FG semantics with values and evaluation contexts. Evaluation context 𝐸
defines the left-to-right call-by-value semantics for expressions. Reductions are defined by the

field selection rule [r-fields], type assertion rule [r-assert], and the method invocation [r-call], with

[r-context] for the context evaluation. We use −→∗
to denote a multi-step reduction. FG satisfies

type preservation and progress properties (see [Griesemer et al. 2020, Theorems 3.3 and 3.4]).

3 FEATHERWEIGHT GENERIC GO AND THE LIMITATIONS OF
MONOMORPHISATION AND GO 1.18

As with § 2, we briefly summarise the Featherweight Generic Go (FGG) language [Griesemer et al.

2020, § 4]. This section concludes with a discussion of limitations in existing generic Go translations

and Go 1.18.

3.1 Featherweight Generic Go by Example
Figure 5 extends Figure 2 with generics. As we saw in § 2.1, there was a critical flaw in the original,

non-generic, FG code. One part of the logic was polymorphic (i.e., Map is a natural transformation)

while the other was not (i.e., Gt). We concluded that section by observing the two options; either

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 168. Publication date: October 2022.
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1 type Any interface {}

2 type Function[T Any, R Any] interface {

3 Apply(x T) R

4 }

5 type Ord[T Ord[T]] interface { Gt(x T) bool }

6 type List[T Any] interface {

7 Map[R Any](f Function[T, R]) List[R]

8 }

9 type Nil[T Any] struct {}

10 type Cons[T Any] struct { head T;tail List[T]}

11 func main() {

12 _ = Cons[int]{1, Cons[int]{7, Cons[int]{3, Nil[int]{}}}} // : List[int]

13 .Map[bool](GtFunc[int]{5}) // : List[bool]

14 .Map[bool](GtFunc[int]{5}) // This line doesn't pass type checking since

15 } // GtFunc does not implement the Function[bool, bool] interface

16 type GtFunc[T Ord[T]] struct { val T }

17 func (this GtFunc[T]) Apply(x T) bool {

18 return this.val.Gt(x)

19 }

20 func (this int) Gt(x int) bool { return x < this }

21 func (this Nil[T]) Map[R Any](f Function[T, R]) List[R] {

22 return Nil[R]{}

23 }

24 func (this Cons[T]) Map[R Any](f Function[T, R]) List[R] {

25 return Cons[R]{ f.Apply(this.head), this.tail.Map[R](f)}

26 }

Fig. 5. FGG List example adapted from [Griesemer et al. 2020, Figures 4 & 6]

we cater to the strict type discipline demanded by Gt, reducing reusability, or force an excessively

permissive polymorphism on Gt and risk runtime type assertion errors.

Generics, or bounded parametric polymorphism, provide us with a third solution via the precise

definition and tracking of polymorphic types in structures, interfaces, and methods. As we shall see

momentarily, in FGG, each of these constructs may now accept any number of type variables (type

parameters) as a type formal, which must then be instantiated upon use. Each type variable has a

bound, an interface, that any instantiating type must satisfy, i.e., be an instance of. Type formal

[T Any] is read as type parameter T is bound by type Any. Objects with a generic type can use

all methods specified by the type variable’s bound. Type variables can be bound by any interface

type, and may be mutually recursive within a type formal. Take, for example, the type bound of

Ord in Figure 5. Ord is bound by Ord itself and is used recursively in the type bound for GtFunc.
For a type (e.g., int) to instantiate type variable T in [T Ord[T]], its Gt method must not only

take an argument of Ord, but must be precisely the same Ord-implementing type. This kind of

self-referential type bound is known as F-bounded polymorphism [Canning et al. 1989].

The interface Function is now defined over two type variables (T and R, both bounded by

Any), which are used by the specified Apply method to type the simulated function’s domain and

codomain, respectively, e.g., a type implementing Function[int, bool] must implement the

method Apply(x int) bool. Unlike the original FG code, we do not need GtFunc to simulate any

arbitrary function, but rather just functions from some generic Ord type to bool. Instantiating
GtFunc with int, written GtFunc[int], gives an implementation of Function[int,bool].

A type bound not only limits which types may specialise a type parameter, but also what methods

are available to polymorphic values, i.e., given that all valid specialisations of T in GtFunc[T] must

implement Ord[T], we know that the val field must always possess the Gt method, allowing us to

call to Gt on line 18 without a type assertion.

The definition of List tracks not only the type of the list, but also the type of the list created by Map.
The Map method accepts a type parameter along with a Function argument; this type parameter is

then used as the codomain of the Function argument, and instantiates the List return type. Line 14
thus fails during type checking because GtFunc does not implement Function[bool, bool].

3.2 Featherweight Generic Go Syntax and Semantics
Figure 6 presents the syntax of FGG. The key differences from FG are the addition of types formal

(Ψ,Φ) for method signatures and declarations. A type formal (𝛼 𝜏𝐼 ) is a sequence of pairs, each of

which contains a type parameter (𝛼) and parameter bound (𝜏𝐼 ). Type bounds are interface types

that can be mutually recursive, in that any bound in a type formal may depend upon any type

parameter in that type formal, including itself. Type parameters are instantiated by a type actual

(𝜓, 𝜙) – a sequence of types that satisfy the requirements imposed by the type formal. A type (𝜏 ) in

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 168. Publication date: October 2022.
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Field name 𝑓 Type 𝜏, 𝜎 ::= Expression 𝑒 ::=

Variable name 𝑥 Type parameter 𝛼 Method call 𝑒.𝑚 [𝜏 ] (𝑒)
Method name 𝑚 Named type 𝑡 [𝜏 ] Variable 𝑥

Interface type name 𝑡𝐼 ,𝑢𝐼 Interface type 𝜏𝐼 , 𝜎𝐼 ::= 𝑡𝐼 [𝜏 ] Type assertion 𝑒.(𝜏)
Structure type name 𝑡𝑆 ,𝑢𝑆 Structure type 𝜏𝑆 , 𝜎𝑆 ::= 𝑡𝑆 [𝜏 ] Field select 𝑒.𝑓

Type name 𝑡,𝑢 ::= 𝑡𝐼 | 𝑡𝑆 Interface-like type 𝜏𝐽 , 𝜎𝐽 ::= 𝛼 | 𝜏𝐼 Structure literal 𝜏𝑆{𝑒}

Type parameter 𝛼 Type formal Φ,Ψ ::= 𝛼 𝜏𝐼 Type literal 𝑇 ::=

Declaration 𝐷 ::= Type actual 𝜙,𝜓 ::= 𝜏 Structure struct {𝑓 𝑡}

Type decl. type 𝑡 [Φ] 𝑇 Interface interface {𝑆}
Method decl. func(𝑥 𝑡𝑆 [𝛼 ]) 𝑚𝑀{return𝑒} Meth. spec. 𝑆 ::=𝑚𝑀

Program 𝑃 ::= package main; 𝐷 func main(){_ = 𝑒} Meth. signature 𝑀 ::= [Ψ] (𝑥 𝑡 ) 𝑡

Fig. 6. Syntax of Featherweight Generic Go
Value 𝑣 ::= 𝜏𝑆{𝑣}

Evaluation context 𝐸 ::=

Hole □ Structure 𝜏𝑆{𝑣, 𝐸, 𝑒} Call receiver 𝐸.𝑚 [𝜓 ] (𝑒)
Select 𝐸.𝑓 Type assertion 𝐸.(𝜏) Call arguments 𝑣.𝑚 [𝜓 ] (𝑣, 𝐸, 𝑒)

[r-fields]

(𝑓 𝜏) = fields (𝜏𝑆 )
𝜏𝑆{𝑣}.𝑓𝑖 −→ 𝑣𝑖

[r-call]

(𝑥 : 𝜏𝑆 , 𝑥 : 𝜏) .𝑒 = body (type (𝑣) .𝑚 [𝜓 ])
𝑣.𝑚 [𝜓 ] (𝑣) −→ 𝑒 [𝑥 := 𝑣, 𝑥 := 𝑣 ]

[r-assert]

∅ ⊢ type (𝑣) <: 𝜏
𝑣.(𝜏) −→ 𝑣

[r-context]

𝑒 −→ 𝑒′

𝐸 [𝑒 ] −→ 𝐸 [𝑒′]

type (𝜏𝑆{𝑣}) = 𝜏𝑆

(func (this 𝑡𝑆 [𝛼 ]) 𝑚 [Ψ] (𝑥 𝜏) 𝜏 {return𝑒}) ∈ 𝐷 𝜃 = (𝛼,Ψ := 𝜙,𝜓 )
body (𝑡𝑆 [𝜙 ] .𝑚 [𝜓 ]) = (𝑥 : 𝑡𝑆 [𝜙 ], 𝑥 : 𝜏) .𝑒 [𝜃 ]

(type 𝑡𝑆 [Φ] struct {𝑓 𝜏}) ∈ 𝐷 𝜂 = (Φ := 𝜙)

fields (𝑡𝑆 [𝜙 ]) = 𝑓 𝜏 [𝜂 ]
Fig. 7. Reduction semantics of Featherweight Generic Go

FGG is either a type parameter or a declared type that has been instantiated (𝑡 [𝜙]). We simplify

method declaration from FGG [Griesemer et al. 2020], following the Go 1.18 syntax.

The type system in FGG extends FG with the addition of a new type variable context Δ mapping

type variable to its bound. Expression 𝑒 of type 𝜏 is now given by the judgement Δ; Γ ⊢ 𝑒 : 𝜏 .

Program well-formedness is given by 𝑃 ok. The typing rules follow those given in [Griesemer et al.

2020, Figure 15], which can be found in Appendix C.

The reduction semantics of FGG are defined in Figure 7. They extend those of FG; notably, [r-call]

(via the body auxiliary function) specialises generic types in the resolved method body. FGG satisfies

type preservation and progress properties (see [Griesemer et al. 2020, Theorems 4.3 and 4.4]).

3.3 The Limitation of Monomorphisation
Griesemer et al. [2020] define a class of programs that their monomorphisation approach cannot

translate. This limitation also applies to the Go 1.18 call-graph based dictionary implementation for

the same rationale. Consider the model non-monomorphisable program in Figure 8.

1 type Box[𝛼 Any] struct { value 𝛼 }

2 func (b Box[𝛼]) Nest(n int) Any {

3 if (n > 0) {

4 return Box[Box[𝛼]]{b}.Nest(n-1)

5 } else { return b }

6 }

Fig. 8. Box example
[Griesemer et al. 2020, Figure 10]

Intuitively, the fundamental issue with this deceptively sim-

ple program is that instance set discovery is non-terminating. To

monomorphise a program, we first need to discover all possible

type instantiations used in said program. Perfectly well-behaved

programs may however produce infinitely many type instanti-

ations. This occurs when an instance of a (mutually) recursive

method eventually depends upon a greater instantiation of itself,

which in turn depends on an even greater instantiation of itself

ad infinitum, e.g., Box[int].Nest() depends upon the speciali-

sation Box[Box[int]].Nest(). In [Griesemer et al. 2020], such programs are called nomono.
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3.4 Go 1.18 Implementation
The official release of Go 1.18 uses an optimised version of monomorphisation called dictionaries and
GC shape stenciling [Randall 2022]. When possible, their implementation reuses monomorphised

functions to reduce code size. Two objects may share the same specialised method implementation

when they have the same GC shape. In the current implementation, the criteria of having the same

GC shape means they are of the same data type, or both are pointers. Each function therefore must

to have a dictionary to differentiate concrete types at runtime. A dictionary contains (1) the runtime

type information of generic type parameters, as well as (2) their derived types used in the function.

In the function body, each generic function call that depends on the generic type parameters also

needs a dictionary; (3) these sub-dictionaries required by the method calls are also provided in the

dictionary. Additionally, the dictionary provides each generic object with (4) the data structure that

Go runtime uses to conduct method calls.

Go 1.18 would also need to create an infinite call-graph dictionary for the Box example in Figure 8,

as well as for the permute example in Figure 1. Hence, Go 1.18 cannot handle either example. Our

call-site dictionary-passing approach does not suffer this limitation.

4 CALL-SITE, NON-SPECIALISING DICTIONARY-PASSING TRANSLATION
This section presents our new dictionary-passing translation from FGG to FG.

High level overview. Our call-site, non-specialising dictionary-passing translation can be split

into a number of parts, each tackling a different challenge. Specifically, we consider: the preservation

of typeability, the use of dictionaries to resolve generic method implementations, the creation of

dictionaries, and the preservation of type assertion behaviour. These challenges may have been

discussed in other works, yet the structural type system of Go serves to hinder any existing solutions.

We explain the key ideas and challenges in § 4.1, and detail the formal translation rules in § 4.2.

4.1 Dictionary-Passing by Example
4.1.1 Structural Subtyping and Type Erasure. The first challenge we encounter is that sub-
types must be preserved. If, in the source program, expression 𝑒 can be used as an argument to Foo,
then the translation of 𝑒 should likewise be usable as an argument to the translation of Foo. We

should also desire that any non-subtypes are preserved, we leave this challenge to § 4.1.3.

As a first naive attempt at removing polymorphic types, we might observe that regardless of

the value we pass to a polymorphic argument, it must implement the Any type. From this, we

could – again, naively – conclude that lifting all polymorphic arguments to the Any type solves
our problem. Unfortunately, such a solution fails upon closer inspection. Consider the code in

Figure 5. By erasing the polymorphic types in Function, we lose the subtype GtFunc[int] <:

Function[int, bool] (The naively erased GtFunc implements Apply(in Any) bool, while the
erased Function demands Apply(in Any) Any). This issue is noted in Igarashi et al. [1999, § 4.4].

Their solution, however, is inappropriate in a structurally typed language such as Go. In nominally

typed languages like Java, it is clear that one type subtypes another. One need only inspect the

implementing type’s declaration, as a subtype exists only when it is explicitly declared. Igarashi

et al. [1999] insert bridge methods to handle cases such as the GtFunc-Function example. A bridge

method is an overloaded method added to the subtype whose type matches the erased method

as specified by the supertype, i.e., adding an overloaded method of type Apply(in Any) Any to
GtFunc. This method is immediately inappropriate as Go does not allow method overloading.

The bridge method solution would still be inappropriate were we to simulate overloading using

name mangling. To add bridge methods, we need to know – statically – that a subtype exists. In

FGG, we need to know how two types are instantiated before we can conclude that a subtype
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1 type Ord[T Ord[T]] interface {

2 Gt[](that T) bool

3 }

4 type GtFunc[T Ord[T]] struct { val T }

5 func (this GtFunc[T]) Apply(in T) bool {

6 return this.val.Gt[](in)

7 }

8 type Max struct {}

9 func (this Max) Of[T Ord[T]](l T, r T) T {

10 · · · l.Gt(r) · · ·
11 }

12 func main() { GtFunc[int]{5}.Apply(7) }

1 type Ord interface{ Gt(that Any) Any }

2 type OrdDict struct {

3 Gt func(rec Any, in Any) Any ; //Gt method pointer

4 /*Simulated type*/ }

5 type GtFunc struct { val Any ; dict OrdDict }

6 func (this GtFunc) Apply(in Any) Any {

7 return this.dict.Gt(this.val /*Receiver*/, in)

8 }

9 func (this Max) Of(dict OrdDict, l Any, r Any) Any {

10 · · · dict.Gt(l, r) · · · }

11 func main() {

12 od := OrdDict{Gt: func(rec Any, in Any) Any { rec.(int).Gt(in)}}

13 GtFunc{5, od}.Apply(7) }

Fig. 9. Dictionary-passing translation example extending Figure 2. FGG source (Left), FG translation (Right)

relation exists. This requires the kind of potentially infinite whole program analysis (§ 3.3) that

we wished to avoid in our dictionary-passing translation. Instead, we ensure that subtypes are

preserved by erasing all method types, rather than just polymorphic types. As with GtFunc’s Apply
method in Figure 2, when a variable of a known type is used, we assert it to that type; although

unlike Figure 2, the FGG type checker has already ensured the safety of these synthetic assertions.

4.1.2 Dictionaries. We are now confronted with the primary challenge of concern to dictionary-

passing translations; how do we resolve generic method calls without polymorphic type informa-

tion? A dictionary is, at its simplest, a map from method names to their specific implementation

for some type. A dictionary-passing translation, then, is one which substitutes the specialisation of

type parameters with the passing of dictionaries as supplementary value-argument. One may then

resolve a method call on a generic value by performing a dictionary lookup.

Presently, we consider the structure and usage of dictionaries while delaying our discussion of

call-site dictionary construction and type simulation until § 4.1.4 and § 4.1.3, resp. Consider Figure 9
(left) extending a fragment of Figure 2 with a Max.Ofmethod. For us to call Gt in GtFunc[T].Apply
or Max.Of[T], we need to know the concrete type of T. This information is lost during erasure.

The translation (right) includes a fresh struct OrdDict which is, quite naturally, the dictionary

for Ord bounded type parameters. Dictionaries contain a method pointer field for each method

in the original interface, along with a type-rep which shall be discussed in § 4.1.3. FG does not

include method pointers; instead, we must simulate them using higher order functions with the first

argument being the receiver. While this adds a small amount of complexity to the final correctness

proofs, we see this as a worthwhile compromise, as it allows us to focus on the translation of generics

alone, rather than on generics and on a translation to some low level language. By containing each

method specified by the FGG bounding interface, dictionaries have a fixed internal representation.

This reflects real-world dictionary-passing implementations and allows entries to be accessed

efficiently [Driesen and Hölzle 1996].

1 type Foo[𝛼 Any] interface {

2 do[𝛽 Any](a 𝛽, b bool) 𝛼

3 }

4 type Bar[𝛼 Any] struct {}

5 func (x Bar[𝛼]) do[𝛽 Any](a 𝛽, b 𝛼) int {· · ·}
6 func main() {

7 Bar[bool]{}.(Foo[int]);

8 Bar[bool]{}.(Foo[bool])

9 }

Fig. 10. Type-rep example. FGG source

Dictionaries are passed to methods via two mech-

anisms, namely the method’s receiver, and as regular

value-arguments. Generic structures, e.g., GtFunc, pos-
sess a dictionary for each type parameter. When used as

a receiver, these dictionaries can be accessed using stan-

dard field destructuring. Method dispatch then takes

the form of a dictionary lookup and method invocation

as seen on lines 7 and 10 (right).

4.1.3 Type Collision. Here we consider the challenge of ensuring that type assertion behaviour

is preserved by our translation. Erasing type parameters may introduce new subtypes which did not

exist in the source program. Consider the expression GtFunc[int]{5}.(Function[bool, bool])
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1 type _type_metadata interface { tryCast (in Any) Any }

2 type AnyDict struct {_type _type_metadata}

3 type Foo interface { do(dict0 Anydict, in Any) Any ; spec_do() spec_metadata4 }

4 type Foo_meta struct { _type0 _type_metadata }

5 func (this Foo_meta) tryCast(x Any) Any { // Type formal, Parametrised arg, Literal arg, return type 𝛼

6 if (x.(Foo).spec_do() ! = spec_metadata4{Any_meta{}, param_index0{}, Bool_meta{}, this._type0 }) { panic }

7 return x }

8 type Bar struct {dict0 AnyDict}

9 func (this Bar) spec_do() spec_metadata4 { // Type formal, Parametrised arg, Arg type 𝛼, return type literal

10 return spec_metadata4{Any_meta{}, param_index0{}, this.dict0._type, Int_meta{}}}

11 func main() {

12 Foo_meta{Int_meta{}}.tryCast(Bar{AnyDict{Bool_meta{}}})

13 Foo_meta{Bool_meta{}}.tryCast(Bar{AnyDict{Bool_meta{}}}) }

Fig. 11. Type-rep example. FG translation

where GtFunc and Function are defined in Figure 5. Upon evaluation, this expression produces

a runtime type assertion error as GtFunc[int]{5} is not a subtype of Function[bool, bool].
The erased types as described in § 4.1.1, however, form a subtype relation, meaning the error will

not occur in the translated code. This behaviour would be incorrect. To ensure that type assertion

errors are correctly preserved we simulate the FGG type assertion system inside the translated

FG code via type-reps [Crary et al. 1998]. A simulated FGG type implements _type_metadata by

specifying a method, tryCast, which throws an error if and only if the FGG assertion would have

failed.

Consider the code in Figure 10. The source FGG code contains two assertions; the one on line 7

passes, while line 8 produces a type assertion error.

A struct implements an interface when it correctly implements each method specified by the

interface. This means that not only does the struct define a method of the same name, but also

of precisely the same type. Assertion to an interface, then, need only ensure that each method is

correctly implemented. Assertion to a structure is a simple type equality check.

The translated interface, Figure 11, now includes the meta method spec_do, returning simulated

FGG type information for a struct’s do implementation.

The spec_metadata4 object returned by spec_do on line 10 of the target code is a four-element

tuple containing: type parameter bounds, argument types, and the return type. This object simulates

the FGG method type for do on Bar[𝜏] for some 𝜏 , i.e., do[𝛽 Any](a 𝛽, b 𝜏) Int[]. The first
entry Any_meta{} gives the simulated type bound of the source method’s type parameter 𝛽 . The

next gives the type of argument a, namely 𝛽 . As there is no suitable concrete metadata type for

𝛽 , we use an index param_index0 to indicate that a’s type is the method’s first type parameter.

The third, that of b, is not known at compile time, but is rather given by the type parameter of the

receiver. Finally, the return type is given by the constant Int_metadata.
The type assertion on line 13 uses the Foo_meta’s tryCastmethod defined on line 5. This method

first checks that the erased types are compatible, i.e., that Bar implements all erased methods in

Foo. The spec_do method is then used to check the simulated method type matches the interface

specification. If any of these checks is failed then the assertion fails and a panic is thrown.

4.1.4 Call-Site Dictionary Creation. As discussed in § 3.3, the approach taken by Go 1.18 is

fundamentally limited by its use of call-graph based dictionary construction. In contrast we consider

the challenge of the call-site construction of dictionaries in a structurally typed language. Our

approach overcomes the aforementioned limitation of [Griesemer et al. 2020] and Go 1.18.

We note a few key facts. A 𝜏-dictionary provides all the methods specified by the type bound 𝜏 ,

and we may build a dictionary for any specialising type which is a subtype of 𝜏 . We can also use a

type variable to specialise some other type variable as long as the bound of the later is a supertype

of the former. In a translation this dictionary-supertyping involves using a 𝜏-dictionary to build a
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1 type Eq[𝛼 Eq[𝛼]] interface {

2 Equal(that 𝛼) bool

3 }

4 type Ord[𝛼 Ord[𝛼]] interface {

5 Gt(that 𝛼) bool;

6 Equal(that 𝛼) bool

7 }

8 func Foo[𝛽 Ord[𝛽]](val 𝛽) Any {

9 return Bar[𝛽](val)

10 }

11 func Bar[𝛽 Eq[𝛽]](val 𝛽) Any {· · ·}
12 func main() { Foo[int](5) }

1 type EqDict struct { Equal func(rec Any, that Any) Any }

2 type OrdDict struct {

3 Equal func(rec Any, that Any) Any ;

4 Gt func(rec Any, that Any) Any

5 }

6 func Foo(dict OrdDict, val Any) Any {return Bar(EqDict{dict.Equal}, val)}

7 func Bar(dict EqDict, val Any) Any { · · · }

8 func main() {

9 old_dict := OrdDict{

10 Equal : func(rec Any, that Any) Any { return rec.(int).Equal(that) }

11 Gt : func(rec Any, that Any) Any { return rec.(int).Gt(that) } }

12 Foo(old_dict, 5) }

Fig. 12. Call-site dictionary creation example. FGG source (Left). FG translation (Right)

potentially different 𝜎-dictionary. In a nominally typed language the explicit, and fixed, hierarchy

allows a dictionary-passing translation to easily structure and construct dictionaries according to

the subtype hierarchy. Dictionary-supertyping in nominally typed languages is generally a matter

of extracting the appropriate sub-dictionary [Bottu et al. 2019].

In a structurally typed language, however, there is not a fixed subtype hierarchy. Recall that

in order to infer subtype relationships, we first need the specific type instances. We have two

choices: either explore the entire call graph to discover all type instantiations and construct our

dictionaries according to the call-graph, or construct/supertype our dictionaries at the call-site

where specialisation would have happened. The former approach was taken by Go 1.18 and beyond

the significant static analysis required, this approach also suffers from the same finiteness limitation

encountered by monomorphisation approaches [Griesemer et al. 2020].

We demonstrate our call-site approach in Figure 12. This example consists of two interfaces, Eq
and Ord, which form a subtype relation along with a method Foo which uses a type parameter

bounded by Ord to instantiate a type parameter bounded by Eq.
If, in the source program, there are two types 𝜎 and 𝜏 where there exists an instantiation creating

a subtype relation, then the two erased types form a subtype relation. This is precisely the result

discussed in § 4.1.1. When initially creating a dictionary, we populate it with the required method

pointers for the known instantiating type. If, however, we are creating a 𝜏-dictionary for type

parameter 𝛽 bounded by 𝜎 , then the method contained by the supertyping 𝜏-dictionary (Eq) is a
subset of the 𝜎-dictionary (Ord) for type parameter 𝛼 . Dictionary-supertyping then consists of

destructuring the subtype’s dictionary and – along with the type-rep – adding all required method

pointers to a new supertype-dictionary.

While conceptually simple, our call-site approach directly addresses the unique issues raised by

structural typing systems and allows us to overcome the limitation discussed in § 3.3 that afflicts

both monomorphisation [Griesemer et al. 2020] and Go 1.18.

4.2 Dictionary-Passing Judgement
This subsection is technical: readers who are not interested in the formal translation rules can

safely skip this subsection.

We define the judgement ⊢ 𝑃 Z⇒ 𝑃‡
as the dictionary-passing translation from 𝑃 in FGG to 𝑃‡

in FG. The expression judgement Δ;𝜂; Γ ⊢ 𝑒 Z⇒ 𝑒‡ is parametrised by variable and type variable

environments (Γ and Δ resp.) as well as a dictionary map 𝜂 from type variable names to dictionary

variables. We provide auxiliary functions in Figure 13 and translation rules in Figure 14.

Name constants. We introduce a set of maps from name constants in FGG to unique FG names

which are assumed to never produce a collision, (1) typeDict (𝑡𝐼 ) — from a type bound (interface) to

the dictionary struct name for that bound; (2) mdata_name(𝑡) — from a type name to a simulated
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arity (𝐷) =
⋃

arity (𝐷) arity ( [Ψ] (𝑥 𝜏) 𝜏) = |Ψ | + |𝑥 | arity (type𝜏𝐼 interface {𝑚𝑀}) = arity (𝑀)

arity (type𝜏𝑆 struct {𝑓 𝜏}) = ∅ arity (func (this 𝜏𝑆 ) 𝑚𝑀 {return𝑒}) = {arity (𝑀) }
maxFormal (func (this 𝑡𝑆 [𝛼 ]) 𝑚 [Ψ] (𝑥 𝜏) 𝜏 {return𝑒}) = |Ψ |

maxFormal (type 𝑡𝐼 [Φ] interface {𝑚 [Ψ] (𝑥 𝜏) 𝜏}) = max( |Ψ |, |Φ |) maxFormal (type 𝑡𝑆 [Φ] struct {𝑓 𝜏}) = |Φ |

type_meta𝜁 (𝛼) = 𝜁 (𝛼) type_meta𝜁 (𝑡 [𝜏 ]) = mdata_name (𝑡 ){type_meta𝜁 (𝜏)} asParam(𝛼 𝑡𝐼 [𝜙 ]) = dict typeDict (𝑡𝐼 )

𝑛 = arity (𝑀) 𝑚‡ = spec_name (𝑚)
spec_mdata(𝑚𝑀) =𝑚‡ () spec_mdata𝑛

𝜁 ′ = 𝜁 , {𝛽𝑖 ↦→ param_index𝑖 {}}𝑖 𝑛 = arity ( [𝛽 𝜎𝐼 ] (𝑥 𝜏) 𝜏)

sig_mdata𝜁 ( [𝛽 𝜎𝐼 ] (𝑥 𝜏) 𝜏) = spec_mdata𝑛 {type_meta𝜁 ′ (𝜎𝐼 ), type_meta𝜁 ′ (𝜏), type_meta𝜁 ′ (𝜏) }

dict 𝑢 = asParam(Ψ)

meth_ptr (𝑡,𝑚 [Ψ] (𝑥 𝜏) 𝜏) =
{

typemName (𝑡,𝑚) struct {};
func(𝑥 mName (𝑡,𝑚)) Apply(rec Any, dict Any, 𝑥 Any) Any{return rec.(𝑡 ) .𝑚 (dict.(𝑢), 𝑥) }

}

makeDict𝜂,Δ (𝜏, 𝛼 𝜎) = makeDict𝜂,Δ (𝜏, 𝜎)

Δ ⊢ 𝑡𝐼 [𝜙 ] <: 𝛼 𝑚𝑀 = methodsΔ (𝑡 [𝜙 ]) 𝑡𝑆 = typeDict (𝑡𝐼 )

makeDict𝜂,Δ (𝛼, 𝑡𝐼 [𝜙 ]) = 𝑡𝑆{𝜂 (𝛼) .𝑚, 𝜂 (𝛼) ._type}
Δ(𝛼) = 𝜏𝐼

makeDict𝜂,Δ (𝛼, 𝜏𝐼 ) = 𝜂 (𝛼)

𝑚 [Ψ] (𝑥 𝜏) 𝜎 = methodsΔ (𝑢𝐼 [𝜓 ]) 𝑡𝑆 = typeDict (𝑢𝐼 ) 𝜁 = (−._type) ◦ 𝜂 meta = type_meta𝜁 (𝑡 [𝜙 ])

makeDict𝜂,Δ (𝑡 [𝜙 ],𝑢𝐼 [𝜓 ]) = 𝑡𝑆 {mName (𝑡,𝑚), meta}

Fig. 13. Dictionary-passing auxiliary function

type name; (3) spec_name(𝑚) — from amethod name to a method producing simulated specification;

and (4) mName(𝑡,𝑚) — the method applicator (pointer) for method𝑚 on type 𝑡 .

Auxilary functions. Figure 13 provides a number of auxiliary functions used in the dictionary-

passing translation. The overloaded arity() function computes the number of type and value

parameters required by each method signature, including method signatures in an interface’s

specifications. Function maxFormal(𝐷) computes the number of type parameters expected by the

largest type formal. Function asParam(Φ) converts a type formal into dictionary arguments. The

function meth_ptr (𝑡,𝑚𝑀) constructs the simulated method pointer struct and implementation –

called the abstractor/applicator pair – for method𝑚 on type 𝑡 .

To build a type simulation of type 𝜏 we call type_meta𝜁 (𝜏) where 𝜁 is a map from type variables to

existing simulated types. When simulating the type assertion to an interface in § 4.1.3, we used the

spec_name(𝑚) method spec_do to produce the instantiated simulated signature for method𝑚. The

spec_mdata(𝑚𝑀) function takes an interface’s method specification and produces the specification

for the spec_name(𝑚) method. Simulated method signatures are built using sig_mdata𝜁 (𝑀). This
function takes a map 𝜁 from type variables to simulated types, and extends 𝜁 with the indexing

structs for the method’s type formal.

A set of simulated method signature (spec_mdata𝑛) and type parameter index (param_index𝑖 )

structs are created by the program translation rule ([d-program]); arity(𝐷) and maxFormal(𝐷) are
used to ensure that all needed structs are constructed. spec_mdata𝑛 is an𝑛+1 tuple used in interface
assertion simulation, and describes a method signature of arity 𝑛 and gives type parameter bounds,

value argument types, and the method’s return type. To allow interface assertion simulation to

reference type variables, we use param_index𝑖 {} to reference a method’s 𝑖 th type parameter.

Given a type environment Δ and a map 𝜂 from type variables to existing dictionaries, we build a

𝜏𝐼 -dictionary for type 𝜎 using the makeDict𝜂,Δ (𝜎, 𝜏𝐼 ) function. In the case that 𝜎 is already a type

variable 𝛼 , then the map 𝜂 must contain a dictionary for 𝛼 . When 𝛼 is bounded by 𝜏𝐼 in 𝛿 , we are

done, whereas if 𝜏𝐼 is a subtype of 𝛼 , but not 𝜏𝐼 = 𝛼 , then we need copy method pointers required

by the new (and smaller) 𝜏𝐼 -dictionary. A new dictionary is built for a constant type 𝜎 by providing

a method pointer (abstractor) for each method specified by 𝜏𝐼 and the simulated type of 𝜎 .
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[d-program] fns = {type Function𝑛 interface {Apply(rec Any, {𝑥𝑖 Any}𝑖<𝑛) Any}}𝑛∈𝑛
𝑛 = arity (𝐷) metas = {type spec_mdata𝑛 struct {{_type𝑖 _type_mdata}𝑖≤𝑛}}𝑛∈𝑛 𝑚 = max

⋃
maxFormal (𝐷)

params = {type param_index𝑖 struct {}}𝑖<𝑚 typeMeta = {type _type_mdata interface {tryCast(𝑥 Any) Any}}
⊢ 𝐷 Z⇒ D 𝐷‡ = {type Any interface {}} ∪ params ∪ typeMeta ∪metas ∪ fns ∪

⋃
D ∅; ∅; ∅ ⊢ 𝑒 Z⇒ 𝑒‡

⊢ 𝐷 ⊲ 𝑒 Z⇒ 𝐷‡ ⊲ 𝑒‡

[d-interface] ⊢ 𝑆 Z⇒ 𝑆‡ ⊢ 𝑆 Z⇒dict 𝑆dict 𝜁 = {𝛼 ↦→ this._type}
assertions = {if(𝑥.(𝑡𝐼 ) . spec_name (𝑚) () ! = sig_mdata𝜁 (𝑀)) {panic } |𝑚𝑀 ∈ 𝑆 }

⊢ type 𝑡𝐼 [𝛼 𝜏𝐼 ] interface {𝑆} Z⇒


type 𝑡𝐼 interface {𝑆‡, spec_mdata(𝑆)}
type typeDict (𝑡𝐼 ) struct {𝑆dict, _type _type_mdata}
typemdata_name (𝑡𝐼 ) struct {{_type𝑖 _type_mdata}𝑖< |𝛼 |}
func (thismdata_name (𝑡𝐼 )) tryCast(𝑥 Any) Any{assertions ; return𝑥 }
meth_ptr (𝑡, 𝑆)


[d-meth] (type 𝑡𝑆 [𝛼 𝜏𝐼 ] 𝑇 ) ∈ 𝐷 𝜂 = 𝛼 ↦→ this.dict, 𝛽 ↦→ dict Ψ‡ = asParam(𝛽 𝜎𝐼 )
𝛼 𝜏𝐼 , 𝛽 𝜎𝐼 ;𝜂; this : 𝑡𝑆 [𝛼 ], 𝑥 : 𝜏 ⊢ 𝑒 Z⇒ 𝑒‡ 𝜁 = {𝛼𝑖 ↦→ this.dict𝑖 ._type}𝑖 𝑚‡𝑀‡ = spec_mdata(𝑚 [𝛽 𝜎𝐼 ] (𝑥 𝜏) 𝜏)

⊢ func (this 𝑡𝑆 [𝛼 ]) 𝑚 [𝛽 𝜎𝐼 ] (𝑥 𝜏) 𝜏 {return𝑒} Z⇒

func (this 𝑡𝑆 ) 𝑚 (Ψ‡, 𝑥 Any) Any {return𝑒‡}
func (this 𝑡𝑆 ) 𝑚‡𝑀‡ {return sig_mdata𝜁 ( [𝛽 𝜎𝐼 ] (𝑥 𝜏) 𝜏)
meth_ptr (𝑡,𝑚 [𝛽 𝜎𝐼 ] (𝑥 𝜏)𝜏)


[d-struct]

dict 𝑢 = asParam(Φ) 𝑛 = |Φ | assertions = {if this._type𝑖 ! = 𝑥.(𝑡𝑆 ) .dict𝑖 ._type {panic }}𝑖<𝑛

⊢ type 𝑡𝑆 [Φ] struct {𝑓 𝜏} Z⇒

type 𝑡𝑆 struct {𝑓 Any, dict 𝑢}
type mdata_name (𝑡𝑆 ) struct {{_type𝑖 _type_mdata}𝑖<𝑛}
func (this mdata_name (𝑡𝑆 )) tryCast(𝑥 Any) Any{𝑥.(𝑡𝑆 ) ; assertions ; return𝑥 }


[d-field]

Δ;𝜂; Γ ⊢ 𝑒 Z⇒ 𝑒‡ Δ; Γ ⊢ 𝑒 : 𝑡𝑆 [𝜙 ]
Δ;𝜂; Γ ⊢ 𝑒.𝑓 Z⇒ 𝑒‡ .(𝑡𝑆 ) .𝑓

[d-value] (type 𝑡𝑆 [Φ] 𝑇 ) ∈ 𝐷

𝜙‡ = makeDict𝜂,Δ (𝜙,Φ) Δ;𝜂; Γ ⊢ 𝑒 Z⇒ 𝑒‡

Δ;𝜂; Γ ⊢ 𝑡𝑆 [𝜙 ]{𝑒} Z⇒ 𝑡𝑆 {𝑒‡, 𝜙‡ }

[d-assert]

Δ;𝜂; Γ ⊢ 𝑒 Z⇒ 𝑒‡ 𝜁 = (−._type) ◦ 𝜂
Δ;𝜂; Γ ⊢ 𝑒.(𝜏) Z⇒ type_meta𝜁 (𝜏) .tryCast(𝑒‡)

[d-dictcall] Δ; Γ ⊢ 𝑒 : 𝛼 (𝑚 [Ψ] (𝑥 𝜏) 𝜏) ∈ methodsΔ (𝛼)
𝜓 ‡ = makeDict𝜂,Δ (𝜓,Ψ) Δ;𝜂; Γ ⊢ 𝑒 Z⇒ 𝑒‡ Δ;𝜂; Γ ⊢ 𝑒 Z⇒ 𝑒‡

Δ;𝜂; Γ ⊢ 𝑒.𝑚 [𝜓 ] (𝑒) Z⇒ 𝜂 (𝛼) .𝑚.Apply(𝑒‡,𝜓 ‡, 𝑒‡)

[d-call] Δ; Γ ⊢ 𝑒 : 𝑡 [𝜙 ] (𝑚 [Ψ] (𝑥 𝜏) 𝜏) ∈ methodsΔ (𝑡 [𝜙 ])
𝜓 ‡ = makeDict𝜂,Δ (𝜓,Ψ) Δ;𝜂; Γ ⊢ 𝑒 Z⇒ 𝑒‡ Δ;𝜂; Γ ⊢ 𝑒 Z⇒ 𝑒‡

Δ;𝜂; Γ ⊢ 𝑒.𝑚 [𝜓 ] (𝑒) Z⇒ 𝑒‡ .(𝑡 ) .𝑚 (𝜓 ‡, 𝑒‡)
[d-spec]

Ψ‡ = asParam(Ψ)
⊢𝑚 [Ψ] (𝑥 𝜏) 𝜏 Z⇒ 𝑚 (Ψ‡, 𝑥 Any) Any

[d-dict]

𝑛 = |Φ | + |𝑥 |
⊢𝑚 [Ψ] (𝑥 𝜏) 𝜏 Z⇒dict 𝑚 Function𝑛

[d-var]

Δ;𝜂; Γ ⊢ 𝑥 Z⇒ 𝑥

Fig. 14. Dictionary-passing translation

Program translation. Rule [d-program] introduces new declarations required for method point-

ers and type simulations as described in § 4.1, and the Any interface to provide a uniform, erased, type

representation. Each method applicator must implement an 𝑛-arity function interface Function𝑛 ,
that accepts the receiver and the 𝑛 arguments for the desired method call. The arity of a method

includes both the regular value arguments as well as the dictionary arguments. A simulated type

implements the _type_mdata interface by providing an assertion simulation method (tryCast),
which panics if the assertion is invalid. The spec_mdata𝑛 and param_index𝑖 structs are created as

required by the arity(𝐷) and maxFormal(𝐷) functions, respectively. Each declaration is translated

to multiple declarations; we use D to indicate this.

Interface and dictionary construction. The translation of interfaces produces a number of

FG declarations ([d-interface]). They are (1) an FG interface, and (2) a dictionary for that interface.

The interface 𝑡𝐼 [Φ] becomes the erased type 𝑡𝐼 (1). For each method specification 𝑆 defined by

the source interface, we produce two specifications in the target; the first is defined by [d-spec] and

replaces types formal with appropriate dictionaries while erasing all other types, and the second

defines a method producing the simulated FGG method specification. Since [d-meth] produces such

a simulated specification method for each method, it is guaranteed that any type which implements

the former will implement the latter.
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The dictionary (2) for an interface 𝑡𝐼 is given by a new struct typeDict (𝑡𝐼 ), which contains a

method pointer (abstractor) for each specified method and the simulated type (_type) for the type
parameter’s specialising type. Type simulation is also defined here. For type 𝑡𝐼 [Φ], the simulation

struct (mdata_name(𝑡𝐼 )) contains a field for each type parameter in Φ. The tryCast method

checks that each specified method is implemented correctly by the target of the assertion (See

§ 4.1.3). For clarity of presentation, we assume a number of extra language features that can be

easily implemented in FG, including; if-statement, struct inequality, explicit panic, and sequencing

[Griesemer et al. 2020].

Struct declaration. To translate 𝑡𝑆 [Φ], we erase all field types and add a new dictionary field

for each type parameter in Φ. The simulated type mdata_name(𝑡𝑆 ) is constructed with a variable

for each type parameter, and tryCast checks that the target value is exactly the assertion type.

Method declaration. Judgement on method𝑚[Ψ] (𝑥 𝜏) 𝜏 ([d-meth]) produces a primary method,

a method returning the simulated method type, and an abstractor/applicator pair. The primary

method and simulationmethod’s types match those from [d-interface]. The body of the implementing

method is translated in the Δ;𝜂; Γ environments, where Δ and Γ are built according to the typing

system. There are two locations for type variables – and thus dictionaries – to be passed into a

method, namely in the receiver or as an argument; consequently, 𝜂 may map into either a dictionary

argument (dict𝑖 ) or a receiver’s dictionary field (this.dict𝑖 ).
Expressions. The struct literal (𝑡𝑆 [𝜙]{𝑒}) is translated by first translating each field assignment

and then building an appropriate dictionary for each type in 𝜙 using makeDict ([d-value]).
Method calls are translated in one of two ways. The first ([d-call]) is the immediate structural

translation of sub terms and creation of appropriate dictionaries; this translation is only possible if

the type of the receiver is not a type variable, although it does not need to be a closed type. The

second ([d-dictcall]) translates arguments and creates dictionaries in the same way as the former,

but needs to resolve the method implementation using a dictionary lookup.

5 CORRECTNESS OF DICTIONARY-PASSING TRANSLATION
In this section, we define, justify, and prove the correctness of our dictionary-passing translation

using a behavioural equivalence. We first introduce a general correctness criteria which good

translations should satisfy. We then propose a novel bisimulation up to technique to prove that

translated programs are behaviourally equivalent to their source program. We use this result to

prove the correctness of our dictionary-passing translation. Full proofs can be found in Appendix D.

5.1 Correctness Criteria
The correctness criteria is defined using a number of preliminary predicates provided below.

Definition 5.1 (Type assertion errors). We say expression 𝑒 in FG is a type assertion error (panic
in [Griesemer et al. 2020]) if there exists an evaluation context 𝐸, value 𝑣 , and type 𝑡 such that

𝑒 = 𝐸 [𝑣 .(𝑡)] and type(𝑣) ≮: 𝑡 . We say expression 𝑒 gets a type assertion error (denoted by 𝑒 ⇓panic)
if it reduces to an expression that contains a type assertion error, i.e., 𝑒 −→∗ 𝑒 ′ and 𝑒 ′ is a type
assertion error. We write 𝑃 ⇓panic when 𝑃 = 𝐷 ⊲ 𝑒 and 𝑒 ⇓panic. Similarly, we define 𝑒 ⇓panic and
𝑃 ⇓panic for FGG.

We write 𝑒 ⇓ 𝑣 if there exists 𝑣 such that 𝑒 −→∗ 𝑣 and extend this predicate to 𝑃 . We abbreviate

∅; ∅; ∅ ⊢ 𝑒 Z⇒ 𝑒‡ to ⊢ 𝑒 Z⇒ 𝑒‡.
We define the following general correctness criteria related to typability, error correctness, and

preservation of a program’s final result.

Definition 5.2 (Preservation properties). Let 𝑃 ok in FGG, and let there exist 𝑃‡
such that

⊢ 𝑃 Z⇒ 𝑃‡
. A translation is:
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(1) type preserving: if 𝑃 ok, then 𝑃‡ ok.
(2) type assertion error preserving: 𝑃 ⇓panic iff 𝑃‡ ⇓panic.
(3) value preserving: 𝑃 ⇓ 𝑣 iff 𝑃‡ ⇓ 𝑣‡ with ⊢ 𝑣 Z⇒ 𝑣‡.

We only require the left-to-right direction for type preservation, as due to type erasure (§ 4.1.1),

we cannot obtain the right-to-left direction for dictionary-passing. Our type preservation criteria

matches that defined in Griesemer et al. [2020, Theorem 5.3]. We can, however, show that type

assertions are precisely simulated (§ 4.1.3).

5.2 Behavioural Equivalence – Bisimulation up to Dictionary Resolution
Griesemer et al. [2020, Theorem 5.4] prove the correctness of the monomorphism translation using

a simple (strong) bisimulation: the binary relation ℜ is a bisimulation iff for every pair of ⟨𝑒, 𝑑⟩
in ℜ, where 𝑒 is a FGG expression and 𝑑 is a FG expression: (1) if 𝑒 −→ 𝑒 ′, then 𝑑 −→ 𝑑 ′

such

that ⟨𝑒 ′, 𝑑 ′⟩ ∈ ℜ; and (2) if 𝑑 −→ 𝑑 ′
, then 𝑒 −→ 𝑒 ′ such that ⟨𝑒 ′, 𝑑 ′⟩ ∈ ℜ. This strong bisimulation

suffices for translations that preserve a simple one-to-one reduction-step correspondence.

Unlike monomorphisation, dictionary-passing relies on runtime computation, which prevents

such a simple correspondence. We can, however, distinguish between reductions introduced

by dictionary-passing and those inherited from the source program. This distinction allows

us to construct a one-to-one correspondence relation up to dictionary resolution. The formu-

lation is non-trivial since, in FG, dictionary resolution can occur at any point in a subterm.

1 func foo[𝛼 Num](a 𝛼) 𝛼 {

2 return a.Add(bar(· · ·))
3 }

4 func main() {

5 foo[Int](Zero{})

6 }

1 func foo(dict NumDict, a Any) Any {

2 return dict.Add.Apply(a, bar(· · ·)) }

3 type Int_Add struct {} // method pointer

4 func (i Int_Add) Apply(this Any, a Any) Any {

5 return this.(Int).Add(a) }

6 func main() {

7 foo(NumDict{Int_Add{}}, Zero{}) }

Fig. 15. Non-trivial dictionary example. Source (Left). Translation (Right)

We demonstrate this issue by

evaluating the example in Fig-

ure 15. Importantly, the trans-

lated function foo cannot re-

solve the generic Add method

from dictionary dict until

after expression bar(· · ·) is

fully evaluated.

After one step, the FGG program (left) is Zero{}.Add(bar(· · ·)). If we translate the afore reduced
term, we get Zero{}.(Zero).Add(bar(· · ·)) (𝑄‡

0
). But reducing the translated FG program (right),

we obtain the NumDict{Int_Add{}}.Add.Apply(Zero{}, bar(· · ·)) (𝑄‡
1
).

To show 𝑄
‡
0
equivalent to 𝑄

‡
1
using the standard FG reduction, we would first have to fully

resolve bar(· · ·) before we could start to the resolve dictionary access in 𝑄
‡
1
. We might attempt to

show that the translation in Figure 15 is correct using a many-to-many reduction-step relation,

i.e., some binary relationℜ where for every pair of ⟨𝑒, 𝑑⟩ inℜ it holds that (1) if 𝑒 −→∗ 𝑒 ′, then
𝑑 −→∗ 𝑑 ′

such that ⟨𝑒 ′, 𝑑 ′⟩ ∈ ℜ; and (2) if 𝑑 −→∗ 𝑑 ′
, then 𝑒 −→∗ 𝑒 ′ such that ⟨𝑒 ′, 𝑑 ′⟩ ∈ ℜ. This

approach is both complicated by the presence of non-termination, e.g., if bar(· · ·) does not return a

value, then we could never show that𝑄
‡
0
and𝑄

‡
1
are related. And more importantly, many-to-many

relationships give less information about the nature of a translation than one-to-one relationships.

Were we to consider just the NumDict{Int_Add{}}.Add.Apply(· · ·) portion of 𝑄
‡
1
we observe

that using a pre-congruence reduction𝑄
‡
1
resolves to Zero{}.(Int).Add(bar(· · ·)). We may then

safely increase the accuracy of the assertion Zero{}.(Int) to Zero{}.(Zero)without altering the
semantics of the term. The later step is required because while the dictionary stored the information

that Zero{} was passed to foo as type Int, the reduction of the FGG term forgot this information.

We call these two steps dictionary resolution, as they resolve only those computations introduced

by the use of dictionaries for method resolution. 𝑄
‡
0
is equivalent to 𝑄

‡
1
up to dictionary resolution.
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Our translation also adds type simulation computations and type assertions. Unlike dictionary

resolution, these extra computation steps are subsumed by the standard FG reduction.

Definition 5.3 (Dictionary resolution). We define three pattern sets in FG: 𝜌erase (type assertions

as a result of erasure), 𝜌sim (type assertion simulation), and 𝜌dict (dictionary resolution):

𝜌erase ::=
{
𝑣 .(𝑡)

}
𝜌sim ::=

{
𝑣 ._type𝑖 , 𝑣 ._type, 𝑣 .(𝑡), 𝑣 . spec_name(𝑚) (), 𝑣 .dict𝑖 , if 𝑣 ! = 𝑣 {panic }, return 𝑣

}
𝜌
dict

::=

{
typeDict (𝑡){𝑣}.𝑓 , 𝑣 .dict𝑖 , 𝑣 ._type𝑖 , 𝑣 ._type,
mName(𝑡,𝑚){}.Apply(𝑒), typeDict (𝑡){𝑣}.(typeDict (𝑡))

}
From these patterns, we define a number of reductions. We define the first of these as 𝐸 [𝑒] −→e

𝐸 [𝑒 ′] if 𝑒 −→ 𝑒 ′ with 𝑒 ∈ 𝜌erase; and 𝐸 [𝑒] −→s 𝐸 [𝑒 ′] if 𝑒 −→ 𝑒 ′ with 𝑒 ∈ 𝜌sim. We write 𝑑 =⇒ 𝑑 ′
if

𝑑 −→∗
e
−→−→∗

s
𝑑 ′ ̸−→s.

Let 𝐶 be the context: 𝐶 ::= □
�� 𝐶.𝑓 �� 𝐶.(𝑡) �� 𝑡𝑆{𝑒,𝐶, 𝑒 ′} �� 𝐶.𝑚(𝑒)

�� 𝑒.𝑚(𝑒,𝐶, 𝑒 ′). We define

the dictionary resolution reduction _ as (1) 𝐶 [𝑒] _ 𝐶 [𝑒 ′] if 𝑒 −→ 𝑒 ′ where 𝑒 ∈ 𝜌dict; and

(2) 𝐶 [𝑒.(𝑡)] _ 𝐶 [𝑒.(𝑢)] if ⊢ 𝑒 : 𝑢 and 𝑢 <: 𝑡 .

Notice that if 𝑒 =⇒ 𝑒 ′, then 𝑒 −→+ 𝑒 ′; and that =⇒ can be viewed as a one-step reduction which

corresponds to a one-step of the source language. Reduction −→s only occurs following a call to

tryCast, and simulates whether or not the source FGG assertion is a type assertion error (See

§ 4.1.3). The reduction −→e resolves only the assertions introduced during the type erasure step

(See § 4.1.1). The dictionary resolution reduction 𝜌dict will occur following a method call [r-call]

and simulates the type parameter specialisation. As demonstrated in the above example, the _
reduction may reduce any subterm matching 𝜌dict or refine any type assertion.

Lemma 5.1. Let 𝑒 be an FG expression. Assume ∅ ⊢ 𝑒 : 𝑢.
(1) =⇒ is deterministic, i.e., if 𝑒 =⇒ 𝑒1 and 𝑒 =⇒ 𝑒2, then 𝑒1 = 𝑒2.
(2) _ is confluent, i.e., if 𝑒 _ 𝑒1 and 𝑒 _ 𝑒2, then there exists 𝑒 ′ such that 𝑒1 _ 𝑒 ′ and 𝑒2 _ 𝑒 ′.
We now extend the bisimulation relation to bisimulation up to dictionary resolution.

Definition 5.4 (Bisimulation up to dictionary resolution).

The relation ℜ is a bisimulation up to dictionary
resolution if ℜ · (^)∗ is a bisimulation,

i.e., if 𝑃 ok in FGG and ⊢ 𝑃 Z⇒ 𝑃‡

where 𝑃 = 𝐷 ⊲ 𝑒 and 𝑃‡ = 𝐷‡ ⊲ 𝑒‡

then the diagram (right) commutes.

𝑒

𝑑

⟨𝑒, 𝑒‡⟩ ∈ ℜ

⟨𝑑, 𝑑‡⟩ ∈ ℜ 𝑑‡ 𝑑 ′

𝑒‡
𝜋1

𝜋1

𝜋2

𝜋2 ∗

Intuitively, our translation forms a bisimulation up to dictionary resolution if (1) each step that

the source program takes can be mimicked by the translated program; and (2) conversely, that if the

translated program reduces, then the source program must have been able to make an equivalent

step – albeit with the translated program still needing to evaluate the added dictionary resolution

computations at some future point during computation.

By considering the observable behaviour of a program to be non-dictionary resolution reduction

steps, type assertion errors, and termination (value production), we ensure that the translated

program is behaviourally equivalent to that of the source program. Note that this formulation may

be extended to a concurrent or effectful fragment of Go with the standard addition of barbs [Milner

and Sangiorgi 1992] or transition labels.

Finally, we arrive at our main theorem — that the translation satisfies the correctness criteria.

Theorem 5.1 (Correctness of dictionary-passing). Let 𝑃 ok in FGG and ⊢ 𝑃 Z⇒ 𝑃‡ with 𝑃 = 𝐷 ⊲ 𝑒

and 𝑃‡ = 𝐷‡ ⊲ 𝑒‡.(1) Dictionary-passing translation (−)‡ is type preserving; (2) 𝑒 and 𝑒‡ are bisimilar
up to dictionary resolution; (3) (−)‡ is type assertion error preserving; and (4) (−)‡ is value preserving.
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Theorem 5.1 states that our translation is correct, as translated programs behave exactly as

the source program would have behaved, and that any extra computations are accounted for by

machinery introduced for dictionary-passing.

It is worth stressing that our statement is stronger than the various definitions of dictionary-

passing translation correctness considered in the literature (see § 7), which limit themselves to

non-termination preserving versions of value preservation. By providing an account of intermediate

state equivalence, Theorem 5.1(2) not only gives a meaningful equivalence for non-terminating

programs, but may also be extended to languages with non-determinism or concurrency.

5.3 Proof of Theorem 5.1
We provide the key lemmata, theorems, and corollaries used in the proof of Theorem 5.1. All omitted

proofs may be found in Appendix D.

Type preservation. The type preservation criteria given in Definition 5.2 only considers whole

programs. We must first show that the dictionary-passing translation is type preserving for expres-

sions. Note that the translation of structure literals is the only non-Any typed expression.

Lemma 5.2 (Type preservation of expressions). Let Δ;𝜂; Γ ⊢ 𝑒 Z⇒ 𝑒‡ and JΓKΔ;𝜂;Γ be the FG
environment where all variables in Γ are erased (Any) and each dictionary in 𝜂 is appropriately typed
according to the bound in Δ. If Δ; Γ ⊢ 𝑒 : 𝜏 then (1) If 𝜏 = 𝛼 or 𝜏𝐼 , then JΓKΔ;𝜂;Γ ⊢ 𝑒‡ : Any. (2) If
𝜏 = 𝑡𝑆 [𝜙], then either JΓKΔ;𝜂;Γ ⊢ 𝑒‡ : Any or JΓKΔ;𝜂;Γ ⊢ 𝑒‡ : 𝑡𝑆 .

Corollary 5.1 (Type preservation (Theorem 5.1 (1)). If 𝑃 ok, then 𝑃‡ ok.

Proof. By the assumption that name constant functions are distinct and Lemma 5.2. □

Bisimulation and error preservation. The operational correspondence theorem described

the behaviour of a source program and its translation as four non-overlapping cases. Note that

𝑒‡ =⇒ 𝑒 ′ is the maximum reduction without another type assertion simulation reduction (𝑒 ′ ̸−→s).

Theorem 5.2 (Operational correspondence). Let 𝑃 ok where 𝑃 = 𝐷 ⊲ 𝑒 and let ⊢ 𝐷 ⊲ 𝑒 Z⇒ 𝐷‡ ⊲ 𝑒‡.
(a) If 𝑒 −→ 𝑑 , then there exists 𝑑‡ such that ∅; ∅; ∅ ⊢ 𝑑 Z⇒ 𝑑‡ and 𝑒‡ =⇒ _∗𝑑‡.
(b) If 𝑒‡ =⇒ 𝑒 ′ where 𝑒 is not a type assertion error, then there exists 𝑑 such that 𝑒 −→ 𝑑 and there

exists 𝑑‡ such that ∅; ∅; ∅ ⊢ 𝑑 Z⇒ 𝑑‡ and 𝑒 ′ _∗ 𝑑‡.
(c) If 𝑒‡ =⇒ 𝑒 ′ where 𝑒 is a type assertion error, then 𝑒 ′ is a type assertion error.
(d) If 𝑒 is a type assertion error, then there exists an 𝑒 ′ such that 𝑒‡ =⇒ 𝑒 ′ and 𝑒 ′ is a type assertion

error.

Proof. By induction over the assumed reduction. Full proof is provided in Appendix D. □

Corollary 5.2 (Bisimulation up to dictionary resolution (Theorem 5.1 (2))). Let 𝑃 ok and
⊢ 𝑃 Z⇒ 𝑃‡ with 𝑃 = 𝐷 ⊲ 𝑒 and 𝑃‡ = 𝐷‡ ⊲ 𝑒‡. Then 𝑒 and 𝑒‡ are bisimilar up to dictionary resolution.

Proof. By Theorem 5.2. Letℜ be the least relation such that all source expressions are paired

with their translation.ℜ is a bisimulation up to dictionary resolution. Namely, for each element

⟨𝑒, 𝑒‡⟩ ∈ ℜ, we have that:

(1) If 𝑒 −→ 𝑒 ′, then by Theorem 5.2 (a) there exists a ⟨𝑒 ′, 𝑑⟩ ∈ ℜ such that 𝑒‡ =⇒ _∗𝑑 .
(2) If 𝑒‡ =⇒ _∗𝑑 , then by Theorem 5.2 (b) there exists a ⟨𝑒 ′, 𝑑⟩ ∈ ℜ such that 𝑒 −→ 𝑒 ′.

□

Corollary 5.3 (Type error preservation (Theorem 5.1 (1))). Let 𝐷 ⊲ ok and ⊢ 𝑃 Z⇒ 𝑃‡. 𝑃 ⇓panic
iff 𝑃‡ ⇓panic.
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Proof. For this proof, we define 𝑃‡
as resolving into a type assertion error if 𝑃‡ =⇒ 𝑃 ′

and 𝑃 ′
is

a type assertion error. This happens when 𝑃 is a type assertion error, as in Theorem 5.2 (c) and (d).

By induction on the reductions in ⇓.
Case : Left to right (base): By Theorem 5.2 (d).

Case : Right to left (base): By Theorem 5.2 (c).

Case : Left to right (induction):

If 𝑃 is not a type assertion error, then it reduces to 𝑄 where 𝑄 ⇓panic. By Theorem 5.2 (a)

𝑃‡ =⇒_ 𝑄‡
where ⊢ 𝑄 Z⇒ 𝑄‡

. Apply induction on if 𝑄 ⇓panic then 𝑄‡ ⇓panic.
Case : Left to Right (induction):

We assume that 𝑃‡
does not resolve into a type assertion error, i.e., 𝑃‡ =⇒ 𝑄 ′

where𝑄 ′
is not

a type assertion error. Since _ cannot cause a type assertion error, we also get that𝑄 ′ _∗ 𝑄‡

where 𝑄‡
is not a type assertion error. By Theorem 5.2 (b) 𝑃 −→ 𝑄 . Apply induction on if

𝑄‡ ⇓panic then 𝑄 ⇓panic.
□

Value preservation. Finally, the value preservation property follows dictionary-passing being

a bisimulation up to dictionary resolution, as the dictionary resolution steps are eager reductions

that can equivalently be delayed until they become standard reductions.

Lemma 5.3 (Reduction rewrite). Let 𝑒1 _ 𝑒2 −→ 𝑒3 where 𝑒1 = 𝐶 [𝑑1], 𝑒2 = 𝐶 [𝑑2], and 𝑑1 −→ 𝑑2.
(1) If there exists an 𝐸 such that 𝐶 = 𝐸 then 𝑒1 −→2 𝑒3
(2) If there does not exists an 𝐸 such that 𝐶 = 𝐸 then 𝑒1 −→_ 𝑒3

Lemma 5.4 (Resolution to value). If 𝑒 _ 𝑣 then 𝑒 −→ 𝑣 .

Corollary 5.4 (Value preservation (Theorem 5.1 (4))). Let 𝐷 ⊲ ok and ⊢ 𝑃 Z⇒ 𝑃‡. 𝑃 ⇓ 𝑣 iff 𝑃‡ ⇓ 𝑣‡

where ⊢ 𝑣 Z⇒ 𝑣‡.

Proof. By Corollary 5.2 we have the following diagram (where ℜ is created by Z⇒)

𝑒
‡
1

𝑒
‡
2

𝑒
‡
3

· · · 𝑣‡

𝑒1 𝑒2 𝑒3 · · · 𝑣

∗ ∗ ∗ ∗

By Lemma 5.3 and 5.4 each dictionary resolution reduction _ is either subsumed by −→ or may

be delayed using reduction rewriting until it becomes a −→ reduction. In other words, since

𝑒1 −→ 𝑒2 −→ · · · −→ 𝑣 iff 𝑒
‡
1
=⇒_ 𝑒

‡
2
=⇒_ · · · =⇒_ 𝑣‡. We use that _ can be delayed

(𝑑 _=⇒ 𝑑 ′
implies 𝑑 =⇒_ 𝑑 or 𝑑 −→=⇒ 𝑑), hence 𝑒

‡
1
=⇒+_+ 𝑣‡. Finally, from 𝑒 _+ 𝑣 implies

𝑒 −→+ 𝑣 , we have that 𝑒1 ⇓ 𝑣 iff 𝑒
‡
1
⇓ 𝑣‡.

□

Proof of Theorem 5.1 is given by Corollary 5.1, 5.2, 5.3, and 5.4.

6 IMPLEMENTATION AND EVALUATION
Beside the Dictionary-Passing Translation (dict), we also implement an Erasure Translation

(erasure).We compare the two implementations with three existing translators: Monomorphisation

Translation (mono) [Griesemer et al. 2020], go2go (the initial prototype based on a source-to-source

monomorphisation), and Go 1.18 [Randall 2022] (the official generic type implementation released

on 15th March 2022). This section first discusses the two implementations, then describes the

evaluation methodology, before finally presenting the evaluation results.
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6.1 Implementation of Dictionary-Passing Translation

FGG

dict (§4) ✓

erasure ✗

mono ✓

go2go ✗

Go 1.18 ✗

Fig. 16. Relationship of implementations. ✓

denotes a translation proven correct (Theo-
rem 5.1); ✗ denotes a translation that has not.

We implement the dictionary-passing translator (dict)
and the erasure-based translator (erasure) based on

the FGG artifact [Hu 2021] in Go 1.16. We have fully

tested the implementations using designed unit tests.

Figure 16 shows the code coverage difference across

the five translators.

FGG is the calculus presented in [Griesemer et al.

2020]; dict does not cover receiver type formal sub-

typing; erasure does not cover FGG type assertions;

mono does not cover a class of recursive (nomono) pro-
grams [Griesemer et al. 2020]; go2go is a source-to-

source monomorphisation translator implemented by the Go Team, and does not cover F-bounded
polymorphism, method parametrisation, receiver type formal subtyping, or recursive (nomono)
programs; and Go 1.18 is the official release with generics and has the same limitations as go2go.
Both Go 1.18 and go2go target the full Go language, including features not considered by FGG.

We implement dict following the rules in § 4. Rather than strictly follow the formalisations

of FG and dict translation, we leverage the first-class functions support in Go and use function

types [The Go Team 2021a] as dictionary fields, similar to using function pointers in C/C++. We also

ignore unnecessary type assertions in [d-field] and [d-call]when the translation is not on an interface.

We memorise expression typing results to accelerate compilation. We exclude type simulation

(§ 4.1.3) of non-generic types (i.e., the size of the type formal is zero), and directly use type assertion

for [d-assert] for better runtime performance. We also find if those type metadata are used, and

remove them when possible. Users can also disable all type metadata copies if there are no type

assertions in the input program. In total, dict contains 1160 lines of Go code.

erasure is an alternative homogeneous translation implementation from FGG. This imple-

mentation erases generic type information and uses the underlying interface type, similar to

the erasure implementations for Java [Igarashi et al. 1999; Odersky et al. 2000]. When calling a

method, the erased object is directly used as the receiver (If Δ, 𝛼 :𝑡𝐼 [𝜙]; Γ ⊢ 𝑒 : 𝛼 then Δ, 𝛼 :𝑡𝐼 [𝜙]; Γ ⊢
𝑒.𝑚[𝜓 ] (𝑒) Z⇒ 𝑒‡ .(𝑡𝐼 ).𝑚(𝑒‡)), in contrast to dict’s dictionary lookup ([d-dictcall]). For example,

func f[a Foo](x a) {x.Bar()} translates to func f(x Any) {x.(Foo).Bar()}, while dict
calls the corresponding function in a dictionary field. As in § 4.1.1, naively erasing type param-

eters breaks type assertion preservation (Definition 5.2). An example of erasure is provided in

Appendix E. Compared with dict, erasure provides a concise translation of generics that is fully

based on Go’s existing dynamic dispatch mechanism. When calling a method of a generic object

as though it were an interface, the Go runtime looks up the actual method to call from a list

of methods [Clement Rey 2018; Russ Cox 2009], while dict finds the actual method from the

dictionary. The implementation of erasure contains 765 lines of Go code.

6.2 Evaluation Methodology
Benchmarks. We build two benchmark suites to conduct head-to-head comparisons for the five

translators. 1) Micro Benchmarks: we design five micro benchmark sets. Each has a configuration

parameter to demonstrate how the translated code scales with a particular aspect of FGG/Go

programs. 2) Real-World Benchmarks: we reimplement all benchmarks in previous papers about

generics in Java and Scala [Odersky et al. 2000; Ureche et al. 2013]. Go 1.18 officially released generics

on March 15th, 2022, and it is infeasible for us to find usage of generics in real Go programs. The
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1 type Colour interface{}
2 // Red, Blue < : Colour
3 type Red struct {}; type Blue struct {}
4 func (r Red) Op() Red {return r}
5 func Ops(){Red{}.Op().Op() }
6 type Base[b1, b2 Colour] interface{
7 g1(p1 b1, p2 b2); g2(p1 b1, p2 b2);
8 }
9 type Derived[b1, b2 Colour] struct{};

10 // implements Derived < : Base
11 func (this Derived[…]) g1(p1 b1, p2 b2){}
12 func (this Derived[…]) g2(p1 b1, p2 b2){}
13

14 func CallBase[b1, b2 Colour, base Base]
15 (x base, p1 b1, p2 b2){
16 Ops();
17 x.g1(p1, p2); x.g2(p1, p2)
18 }
19

20 func f2[b1, b2 Colour] (p1 b1, p2 b2){
21 CallBase[b1, b2, Derived[b1, b2]]
22 (Derived[b1, b2]{}, p1, p2)
23 }
24 func f1[b1, b2 Colour] (p1 b1, p2 b2) {
25 f2[b1,b2](p1, p2)
26 }
27 func DoIt(){
28 // enumerate all possible named types
29 f1[Red, Red](Red{}, Red{});
30 f1[Red, Blue](Red{}, Blue{});
31 f1[Blue, Red](Blue{}, Red{});
32 f1[Blue, Blue](Red{}, Blue{});
33 }
34 func main(){
35 for i := 1; i < 10000; i++ {
36 DoIt()
37 } }

Program  a

38 type Base[b1, b2 Colour] interface{
39 g1(p1 b1, p2 b2);
40 g2(p1 b1, p2 b2);
41 ...
42 g (p1 b1, p2 b2);
43 }

44 // implements Derived < : Base
45 func (this Derived[…]) g1(p1 b1, p2 b2){}
46 ...
47 func (this Derived[…]) g (p1 b1, p2 b2){}

48 x.g1(p1, p2); ... x.g (p1, p2)

Program  d

Program  b

49 func f [b1, b2 Colour] (p1 b1, p2 b2){
50 CallBase[b1, b2, Derived[b1, b2]]
51 (Derived[b1, b2]{}, p1, p2)
52 }
53 ...
54 func f2[b1, b2 Colour] (p1 b1, p2 b2) { ... }
55 func f1[b1, b2 Colour] (p1 b1, p2 b2) { ... }

56 func Ops(){Red{}.Op().Op() ... .Op() }
57 //repeats times

Program  c

58 type Base[b1, b2 Colour] interface{
59 g1(p1 b1, p2 b2, ..., p b );
60 g2(p1 b1, p2 b2, ..., p b );
61 }

62 func (this Derived[…])
63 g1(p1 b1, p2 b2, ..., p b ){}
64 func (this Derived[…])
65 g2(p1 b1, p2 b2, ..., p b ){}

66 func DoIt(){
67 f1[Red, Red, ...](Red{}, Red{}, ...);
68 f1[Red, Blue, ...](Red{}, Blue{}, ...);
69 ...
70 // enumerate all possible 2 cases
71 }

Program  e

72 func f […](p1 b1, …, p b ){
73 CallBase[…](Derived[b1, …, b ]{},
74 p1, …, p )
75 }
76 …
77 func f2[b1, b2 Colour](p1 b1, p2 b2){
78 f3[b1, b2, Red](p1, p2, Red{})
79 f3[b1, b2, Blue](p1, p2, Blue{})
80 }
81 func f1[b1 Colour](p1 b1){
82 f2[b1, Red](p1, Red{});
83 f2[b1, Blue](p1, Blue{})
84 }
85 func DoIt(){
86 f1[Red](Red{});
87 f1[Blue](Blue{})
88 }

(Replace line 6-8)

(Replace line 10-12)

(Replace line 20-26)

(Replace line 27-33)

(Replace line 11-12)

(Replace line 6-8)

(Replace line 20-33)

Fig. 17. The base program and its five variations in the micro benchmarks.

second benchmark suite is a reasonable substitute to reveal how the five translators behave in

reality.

Micro Benchmarks. The five sets of micro benchmarks, Program a○- e○, are all derived from a

base program. Figure 17 shows the base program and how the five benchmark sets are derived

from it. In the base program, lines 29–32 enumerate all possible combinations of types actual for

f1(). Function f1() takes two parameters and uses them to call f2() on line 20, which in turn

calls CallBase() on line 14. Function CallBase() calls Ops() on line 5, which further calls Op()
twice to represent two non-generic operations. All methods of interface Base (g1() and g2()) are
implemented by struct Derived, and called on line 17, from receiver variable x with generic type

base. Function main() calls DoIt() 10,000 times (line 36) to provide stable performance results.

The set of Program a○ extends the number of methods of Base (lines 39–42) and Derived (lines

45–47) in the base program, from 2 to 𝑛. Program b○ repeats the non-generic operation 𝑐 times on

line 56, instead of two. In Program c○, we increase the number of type parameters from 2 to 𝑚

(lines 59, 60, 63, and 65), and enumerate all 2
𝑚
type actual combinations (lines 67–70). Program d○

increases the length of the call chain between Doit() and CallBase() from 2 to 𝑝 (lines 49–55).

Program e○ is particularly designed to expose the exponential complexity of monomorphisation

(lines 72–88). Its configuration parameter𝑚 controls both the type parameter number of Base (and

Derived) and the number of functions called in between DoIt() and BaseCall() along the call
chain. For the𝑚 functions in between DoIt() and BaseCall(), we further configure each caller to

call its callee twice, and each callee to have one more parameter than its caller (e.g., function body

of f1 and f2 on lines 77–84).
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Fig. 18. Evaluation results of Program a○

Real-World Benchmarks. We reimplement the Java and Scala programs using go2go, Go 1.18,

and FGG for our evaluation. Since FGG does not support all syntax in the programs, we first use

FGG to reimplement as many functionalities as possible. Then, we translate the FGG code to Go

and manually insert the missed non-generic functionalities. On the other hand, go2go and Go 1.18

support all required syntax, so we use them to reimplement each whole program. We manually test

the reimplementations with designed testing inputs and compare their outputs with the original

versions in Java or Scala. Our tests achieve 100% code coverage.

The benchmarks’ functionalities are explained as follows. List [Ureche et al. 2013] is an imple-

mentation of a linked list. It supports insert and search operations on the linked list. ResizableArray

[Ureche et al. 2013] implements a resizable array. It inserts elements into the array, reverses the

array, and searches elements in the array. ListReverse [Odersky et al. 2000] constructs a linked list

and reverses it. It contains two reversing implementations. VectorReverse [Odersky et al. 2000]

is to reverse an array. Similarly, it implements the reversing functionality in two different ways.

Cell [Odersky et al. 2000] implements a generic container. Hashtable [Odersky et al. 2000] accesses

elements in a hash table.

Metrics. We consider code size, execution time, and compilation time as our metrics. For code

size, we compile each translated benchmark program into a binary executable and disassemble the

executable using objdump [Foundation 2021]. Next, we count the number of assembly instructions

compiled from the benchmark program as its code size, while excluding the assembly instructions

of linked libraries. To measure execution time, we compile each translated FG program using the

Go compiler and compute the average execution time over ten runs. We consider the time spent on

the source-to-source translation and the compilation from a FG program to an executable as the

compilation time for the four source-to-source translators. For Go 1.18, we measure its compilation

time directly. We compile each benchmark program with each translator ten times and report the

average compilation time.

Platform & Configurations. All our experiments are conducted on a desktop machine, with

AMD Ryzen 5 2600 CPU, 32GB RAM, and Ubuntu-18.04. To focus more on the impact of different

translations for generics, we disable garbage collection and compiler optimisations for all translators.

No benchmark requires type simulation. Thus, we disable this option in dict, allowing us to better

understand the impact of method translation and dispatch.

6.3 Evaluation Results
6.3.1 Micro benchmarks. Program a○. We change 𝑛 from 2 to 40 to analyse how the method

number of a generic interface impacts the five translators. As shown in Figure 18a, the code size

(number of assembly instructions) of translated FG programs has a linear relationship with 𝑛 for all

five translators. However, different translators have different coefficients. The coefficients of mono
(328.8), go2go (300.8), and Go 1.18 (297.8) are much larger than the coefficients of dict (117.9) and

erasure (103.8).
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go2go Go 1.18 mono dict erasure
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Fig. 19. Evaluation results of Program e○

Figure 18b shows the execution time of translated programs. The programs translated by dict and
Go 1.18 have a similar performance. They are slower than the corresponding programs translated

by mono and go2go. This is largely due to the usage of dictionaries. The programs generated by

erasure have the worst performance, since the structural typing conducted by erasure when it

translates generic method calls to polymorphic method calls is very slow [Clement Rey 2018; Russ

Cox 2009].

Figure 18c shows the compilation time. mono is significantly slower than the other four translators,
and its compilation time is even not in a linear relationship with 𝑛. The compilation times of the

other four translators are similar to each other.

Programs b○ and d○. How the number of non-generic operations and the length of the call

chain impact the three metrics is quite similar to the method number of generic interface Base in

a○. In particular, the code size, execution time, and compilation time are all in a linear relationship

with the two configuration parameters, except for the compilation time of mono. Comparing b○
with a○, one important difference to note is that for b○, the programs translated by dict spend

a similar execution time to that of the corresponding programs translated by erasure, and the

execution time is larger than the execution time of the programs translated by Go 1.18. However,

in Figure 18b for a○, the line of dict is almost identical to the line of Go 1.18, indicating that their

execution times are similar, and the line of dict is lower than the line of erasure. The reason
is that when dict translates FGG to FG, it also synthesises type assertions for the non-generic

operations in FGG (line 56 in Figure 17). The type assertions slow down the translated FG programs.

Program c○. The code size, execution time, and compilation time all scale exponentially with

𝑚 for the five translators. The underlying reason is that function DoIt() calls f1() 2
𝑚
times in

each input FGG program. After normalising the three metrics with the number of characters in the

FGG programs, we find that the three metrics are in a linear relationship with𝑚. Among the five

translators, erasure’s translated programs have the longest execution time. dict and erasure
spend a similar compilation time, which is much shorter than mono, go2go, and Go 1.18. dict’s
translated programs are similar in size to erasure’s translated programs, but they are smaller

compared with the programs translated by mono, go2go, and Go 1.18.

Program e○. As shown in Figures 19a and 19c, both the code size of the translated programs

and the compilation time scale exponentially with𝑚 for mono, go2go, and Go 1.18. The reason is

that f𝑚() essentially calls CallBase() 2𝑚 times with 2
𝑚
distinct parameter combinations, because

for 𝑖 ∈ [2,𝑚), f𝑖() calls f𝑖+1() twice, with its input parameters plus Red for the first time and

its parameters plus Blue for the second time, leading the three translators to copy CallBase()
2
𝑚
times. However, neither dict nor erasure makes any copy of CallBase(), and the code size

of their translated programs is in a polynomial relationship with 𝑚 (e.g., for dict’s translated
programs, size = 12.8𝑚2 + 34.5𝑚 + 381, 𝑝 < 0.001).

Contrary to the intuition, as shown in Figure 19b, the programs translated by mono have a worse

execution performance compared with the corresponding programs translated by dict, when𝑚 is
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Instruction Count Execution Time (s) Compilation Time (s)

Name go2go Go 1.18 mono dict erasure go2go Go 1.18 mono dict erasure go2go Go 1.18 mono dict erasure

List 1201 1419 1736 862 840 23.2 22.4 24.4 37.69 30.89 0.24 0.22 0.23 0.22 0.22

ResizableArray 1976 2281 1882 867 841 7.0 6.8 6.9 14.90 15.00 0.24 0.22 0.23 0.23 0.22

ListReverse 1546 1818 1753 1115 1204 37.0 35.6 36.0 42.89 41.76 0.26 0.25 0.26 0.24 0.25

VectorReverse 985 1072 1047 921 914 2.99 2.9 3.12 2.66 2.68 0.25 0.24 0.26 0.24 0.25

Cell 112 104 75 196 151 .006 .009 .006 0.007 .007 0.24 0.23 0.16 0.24 0.24

Hashtable 188 184 209 245 249 0.24 0.21 0.46 0.46 0.45 0.19 0.17 0.19 0.19 0.19

Geometric mean 651.0 703.0 674.3 576.9 555.0 1.71 1.72 1.91 2.45 2.35 0.24 0.22 0.22 0.23 0.23

Table 1. Results of real-world benchmarks.

larger than 7. The reason is that when𝑚 is large, a program synthesised by mono has a large code

size, and thus many cache misses occur during its execution. For example, when𝑚 is 9, the size of

the executable file translated by mono is 6.3MB, and the executable triggers 6,058,156 cache misses

in one run, while the program translated by dict only causes 93,695 cache misses.

Type simulation. As we discussed earlier, we disable the metadata copy of type simulation. If

we enable the copy, then the translated programs become slower (e.g., 10% slower for a○ when

configuring 𝑛 equal to 2). The slowdown becomes negligible when 𝑛 is equal to 40.

6.3.2 Real-world benchmarks. The evaluation results of real-world benchmarks are shown in

Table 1. Overall, the translated programs of dict and erasure have a smaller code size, but a

longer execution time, compared with the corresponding programs translated by go2go, mono, and
Go 1.18, which is consistent with the results on the micro benchmarks. However, the compilation

time does not change significantly across different translators, because all real-world benchmarks

are small and do not have many usages of generics.

6.4 Discussion and Limitations
Our experimental results largely reflect the common intuition that monomorphisation translators

(mono, go2go, and Go 1.18) generate programs with a better runtime performance, while non-

specialising translators (dict and erasure) synthesise programs in a smaller code size. However, our

evaluation also pinpoints cases where monomorphisation generates programs in an extremely large

size. The programs trigger excessive cache misses during execution and have a very bad runtime

performance. On the other hand, our experimental results motivate the introduction and usage

of Go generics, since without generics, Go programmers have to implement polymorphism using

interfaces, which is exactly the same as the programs translated by erasure, and our experimental

results show that those programs are slow.

In practice, our dictionary-passing translator (dict) constantly generates programs in a smaller

size and takes a smaller (or comparable) compilation time than all existing translators (including

Go 1.18, the official generic type implementation). Thus, it provides an alternative for real-world

users of Go generics to strike their desired tradeoff. Moreover, our implementation and evaluation

experience show that type simulation is an important component of dict, and that type metadata

incurs extra runtime overhead. Thus, corresponding data structures and algorithms need to be

carefully designed for better translated programs. For instance, link-time optimisation can be

applied to remove unused type metadata.

Possible improvements for Go 1.18. First, Go 1.18 is very conservative in its support for GC

shapes – only considering pointers to have the same GC shape. In our experiments, we do not

observe the reuse of method implementations, or synthesis and use of dictionaries. Thus, to make

full use of dictionaries and GC shape stenciling [Randall 2022], it is necessary for the Go team

to improve the current implementation and support more GC shapes. Second, the Go team can

consider dictionary-passing-based homogeneous compilation, as proposed in this paper, since it
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supports polymorphic recursion, provides a faster compilation speed, generates programs with a

smaller code size, and enables separate compilation.

Limitations. Since the official generic type implementation released on March 15th, 2022, there

does not yet exist generic Go code from large, production-run Go software (e.g., Docker, Kubernetes,

etcd). We build the two benchmark suites to explore the translators’ asymptotic behaviours and

inspect how they perform on representative generic programs in other languages, which is our

best effort in conducting the evaluation.

We formalise dict as a source-to-source translator to clarify design choices for future implemen-

tations and aid our proof of correctness (Theorem 5.1). However, this choice limits the performance

of our implementation, and the evaluation results may not reflect the true capability of dictionary-

passing translation for two reasons: first, we erase all types to Any to ensure type preservation,

which is slow at runtime; and second, Go does not allow the creation of global constant dictionaries

in source code, but those dictionaries can potentially be created by the Go compiler and leveraged

by translated programs for a better runtime performance.

7 RELATEDWORK
Implementation and benchmarks of generics.

Language Translation(s) Optimal Optimal

Exec. Time Code Size

Our work FGG (Go) Dict/Mono/ Mono (1st) Erasure
†
(1st)

Erasure
†

Dict (2nd) Dict (2nd)

Go team Go Mono/Hybrid Mono Mono

[Ureche et al. 2013] Scala (JVM) Hybrid Hybrid Hybrid

[Odersky et al. 2000] Pizza (Java) Mono/Erasure Mono Erasure

[Kennedy and Syme 2001] .NET CLR Hybrid Hybrid N/A

[Jones 1993] Haskell Dict/Mono Mono Mono

(†) FGG Erasure is not type preserving.

Fig. 20. Implementations and benchmarks

To the best of our knowl-

edge, there is no exist-

ing work comparing imple-

mentations of generics in

Go. The closest ones tar-

get JVM languages [Oder-

sky et al. 2000; Ureche

et al. 2013], .NET common

language runtime (CLR)

[Kennedy and Syme 2001],

and Haskell [Jones 1995].

Odersky et al. [2000] bench-

mark a homogeneous (sim-

ilar to erasure) and a heterogeneous (similar to mono) translation for Pizza (an extension of Java

with generics). They find that heterogeneity reduces execution time, but also increases code size.

Jones [1995] gave a similar comparison for Haskell, reporting that monomorphisation produces

a smaller code size; our work shows the opposite result. One major reason is that unnecessary

dictionary fields and manipulation of dictionary parameters require more assembly instructions in

Haskell than Go, as Go targets low-level efficiency.

Kennedy and Syme [2001] apply a hybrid dictionary and monomorphisation approach targeting

the Just-In-Time (JIT) .NET CLR compiler. Object instantiation is conducted lazily at runtime

according to an object’s code and structure (e.g., memory layout and garbage collection shape).

Each object contains a pointer to a dictionary (vtable), which provides method entry points and

type information. With the help of lazy instantiation during runtime, .NET CLR supports abundant

language features, including but not limited to 𝐹 -bounded polymorphism and polymorphic recur-

sion. They compare their design with equivalent non-generic implementations using Objects and
hand-specialised code. Their execution speed is close to that of the hand-specialised versions. The

Go 1.18 approach is similar to .NET CLR, but unlike .NET CLR, its instantiation happens at compile

time. Due to structural typing dictionaries are instantiated through an approach similar to instance

discovery in monomorphisation. Hence, Go 1.18 suffers from an inability to support polymorphic

recursion (i.e., constrained by nomono, § 3.3) and the large code size of monomorphisation (§ 6).
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Ureche et al. [2013] propose an optimised monomorphisation approach called miniboxing using

one monomorphised instance on types with different sizes to reduce code size. Methods of different

types are specialised at runtime using a custom classloader. They benchmark seven different settings,

one achieving at most a 22 times speedup over the default generics translation in Scala. The main

design goal of their benchmarks is the performance of reading and writing miniboxed objects

allocated on heap by the JVM. They test the different combinations of concrete types for generics

(“Multi Context”), which is similar to the scenario of Program c○ (in § 6.2), but their goal is to test

the historical paths executed in the HotSpot JVM. They also test the speed of one method call

hashCode from generics types. In comparison, our benchmarks test how various factors impact the

performance (e.g., the method number in an interface).

Formal translations of generics. Formal translations of generics can be split into three main

techniques; Erasure, dictionary-passing, andmonomorphisation. We consider the most relevant work,

a breakdown of which is provided in Figure 21. Where these works formally prove the correctness

of their translation, we observe that they can be grouped as behavioural equivalence [Griesemer et al.

2020; Igarashi et al. 1999] and value preservation [Yu et al. 2004]. The former demands that during

evaluation the source and target programs are still related, whereas the latter merely requires

that the result of a productive program be preserved. In general behavioural equivalence is a

more fine-grained equivalence, as it can be used to show value preservation. In this paper, we

formalised and then proved our dictionary-passing translation correct using bisimulation up to

dictionary-resolution, which is categorised as a behavioural equivalence.

Yu et al. [2004] formalise a hybrid dictionary and monomorphisation translation for the .NET CLR.

Language Approach Translation(s) Formalised

Our work FGG (Go) S-to-S Dict "

[Griesemer et al. 2020] FGG (Go) S-to-S Mono "

[Igarashi et al. 1999] Java S-to-S Erasure "

[Yu et al. 2004] .NET CLR IR-to-IR Hybrid "

[Bottu et al. 2019] Haskell S-to-IR Dict "

[Odersky and Wadler 1997] Pizza S-to-S Mono/Erasure %

S-to-S=Source to Source; IR=Intermediate representation

Fig. 21. Related Work: Theory

They mostly follow the design

of [Kennedy and Syme 2001].

They consider a target lan-

guage which can, using an ob-

ject’s type, request the specific

dictionary from an assumed in-

finite map. This is justified for

the .NET CLR as method dictio-

naries are created on-demand

using an object’s type. Com-

pare this to our translation in

which we must eagerly construct dictionaries and pass them in addition to the objects that they

describe. Yu et al. [2004, Theorem 5] show that their translation is value preserving; for expression

𝑒 , and value 𝑣 , if 𝑒 evaluates to 𝑣 (𝑒 ⇓ 𝑣) then there is a reduction such that L𝑒M −→∗ L𝑣M (where L−M
is their translation).

Bottu et al. [2019] formalise dictionary-passing in Haskell. Their work focuses on proving a

coherency theorem. They motivate this work as nominally typed languages featuring multiple

inheritance (i.e.,Haskell) suffer from an ambiguity in dictionary-resolution such that the translation

of a single source program may non-deterministically produce different terms in the target lan-

guage. A translation is coherent when these target terms are contextually equivalent. We need not

consider this issue, as Go’s structural typing system does not support the multiplicity of superclass

implementations that causes incoherence. Bottu et al. [2019] do not prove the correctness of their

dictionary-passing translation using an equivalence between the source and target language.

Griesemer et al. [2020] formalised the FG and FGG languages, as well as the mono translation
used in § 6. This work defines a class of FGG programs that can be monomorphised, and proves

that class membership is decidable. Finally, they prove that their translation forms a one-to-one
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bisimulation. Their behavioural equivalence is straightforward and does not require any up to

techniques, as monomorphisation does not introduce runtime computations.

Odersky and Wadler [1997] describe, but do not formalise, two alternative approaches – erasure

and monomorphisation – to implementing generics in the Pizza language, a generic variant of

Java. Igarashi et al. [1999] build on the erasure technique developed in [Odersky and Wadler 1997].

Their work formalises Featherweight Generic Java and proves a formal erasure translation to

Featherweight Java. They prove the correctness of their erasure translation using a behavioural

equivalence, although their translation introduces synthetic casts (assertions), which complicates

the correctness theorems. To resolve this issue, they introduce a reduction for their proofs which

freely adds, removes, or safely alters any required synthetic casts. Correctness of their translation is

split into two directions, called weak completeness and soundness [Igarashi et al. 1999, Theorem 4.5.4

and Theorem 4.5.5], which uses a behavioural equivalence up to the cast reduction. As with

our paper, they use these theorems to show a value preservation corollary. Igarashi et al. [1999,

Corollary 4.5.6] also prove that their erasure translation is type assertion error preserving – in

contrast to our erasure translation, since ours does not preserve type assertions. This disparity is

due to a limitation on the expressivity of assertion in Generic Java. The inclusion of this limitation

has been an area of contention, with other authors suggesting that it could be overcome with the

use of type-reps [Agesen et al. 1997; Allen and Cartwright 2002; Crary et al. 1998; Solorzano and

Alagić 1998; Viroli and Natali 2000].

Formal non-generics dictionary translation. Sulzmann andWehr [2021] propose a dictionary-

passing translation from the non-generic FG to an untyped variant of the 𝜆-calculus with pattern

matching. They use a dictionary-passing approach to investigate Go’s resolution mechanism

for overloaded methods and structural subtyping. Sulzmann and Wehr [2021] prove that their

translation is value preserving using a step-indexed logical relation.

Intuitively, Sulzmann and Wehr [2021] use an inductive proof technique that, using two related

values 𝑣 and 𝑣 ′ at type 𝑡 , relates any terms (𝑒 and L𝑒M) that can reduce to 𝑣 and 𝑣 ′ (resp.) within
𝑘 reduction-steps. Step-indexed logical relations are a sophisticated extension to logical relations

(e.g., [Bottu et al. 2019]), and are applicable for languages with recursion. Sulzmann and Wehr

[2021] left a type-preserving translation from FG and a translation from FGG as their future work.

No implementation or evaluation of their translation is provided.

Alternatives to bisimulation up to. In our motivating example for up to dictionary resolution
(Figure 15), we briefly discuss potential alternate many-to-many bisimulation approaches. One such

approach is the stuttering bisimulation [Browne et al. 1988], which has been studied extensively in

the domain of model checking [Baier and Katoen 2008]. The stutter bisimulation relates two terms

when they both reduce to related terms in an unbounded, but finite, number of steps. Formally,

𝑒 and L𝑒M are related by a stutter bisimulation when (1) 𝑒 −→ 𝑒 ′ implies that there exists a finite

reduction L𝑒M −→ 𝑑0 −→ · · · −→ 𝑑𝑛 (𝑛 ≥ 0) where each intermediate state 𝑑𝑖 is related to 𝑒 ′;
and symmetrically, (2) L𝑒M −→ 𝑑 implies that there is a finite reduction from 𝑒 with each element

being related to 𝑑 . This approach works well for finite models, but becomes undecidable when
applied to Turing complete languages such as FGG. To overcome this issue, the works in [Hur

et al. 2014; Leroy 2009] consider restricted, decidable, variants of the stutter bisimulation to show

the correctness of their translations. Leroy [2009] formulates the non-symmetric “star”-simulation,
which requires a well-founded ordering on reducing terms to ensure that either (1) both source and

target terms reduce infinitely; or (2) the source cannot reduce infinitely while the target is stuck. In

practice, the well-founded ordering used in (2) is approximated using fixed parametric bounds. Hur

et al. [2014] formulate this idea using stuttering parametric bisimulation, which bounds the number

of steps that two related terms can take before their reductions are related. Such restricted variants

of the stutter bisimulation cannot provide a sound and complete correctness proof for dict. More
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generally, our use of a fine-grained up to bisimulation not only develops on existing correctness

theorems for the translation generics [Griesemer et al. 2020; Igarashi et al. 1999], but it can also be

readily extended to include advanced language features such as concurrency and side effects in Go.

8 CONCLUSION
In this paper, we design and formalise a new source-to-source, non-specalised call-site dictionary-

passing translation of Go, and prove essential correctness properties introducing a novel and general

bisimulation up to technique. The theory guides a correct implementation of the translation, which

we empirically compare along with the recently released Go 1.18, an erasure translator, and two

existing monomorphisation translators [Griesemer et al. 2020; The Go Team 2021b], with micro

and real-world benchmarks. We demonstrate that our dictionary-passing translator handles an

important class of Go programs (F-bounded polymorphism and nomono programs) beyond the

capability of Go 1.18 and existing translations [Griesemer et al. 2020; The Go Team 2021b], and

provide several crucial findings and implications for future compiler developers to refer to. For

instance, Go 1.18 requires more improvements on GC shapes in order to effectively generate small

binary code (See 6.4 for a more detailed discussion).

Beyond Go language, many dynamically typed languages (such as Python, JavaScript, and Erlang)

type-check at runtime, and their engines cannot easily decide an object’s implemented methods

nominally, similarly to Go. Consequently, many of their implementations [Castanos et al. 2012;

Gal et al. 2009; Salib 2004] apply similar approaches to monomorphisation to optimise execution

speed. Rust also supports generic via monomorphisation, yet this is considered a major reason for

slow compilation. Our work can help in choosing alternative optimisations for these languages to

reduce code size and compilation time.

In the future, we plan to inspect how other important Go language features (e.g., reflection,
packages, first-class, anonymous functions) interact with generics by proving the correctness and

examining the trade-offs among runtime performance, code sizes, and compilation times.
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A APPENDIX: GENERIC IMPLEMENTATIONS OF TOP 16 STATICALLY TYPED
GENERIC PROGRAMMING LANGUAGES

Programming Language Mainstream Implementation Memory Management Runtime Environment

Java Erasure Garbage Collection JVM

Kotlin Erasure Garbage Collection JVM

Scala Erasure Garbage Collection JVM

C# Just-In-Time Specialisation + Non-Specialised Dictionary Garbage Collection .NET CLR

Visual Basic Just-In-Time Specialisation + Non-Specialised Dictionary Garbage Collection .NET CLR

Dart Erasure Garbage Collection Virtual Machine

Swift Non-Specialised Dictionary/Monomorphisation* Reference Counting Native

Objective-C Non-Specialised Dictionary/Monomorphisation* Reference Counting Native

Haskell Non-Specialised Dictionary Garbage Collection Native

Go Monomorphisation + Specialised Dictionary Garbage Collection Native

D Monomorphisation Garbage Collection Native

C++ Monomorphisation Manual Native

Rust Monomorphisation Manual Native

Delphi Monomorphisation Manual Native

Ada Monomorphisation Manual Native

Fortran Monomorphisation Manual Native

Table 2. Generic implementations of top 16 statically typed programming languages with generics. Languages
are selected from the top 40 languages by IEEE Spectrum in 2021 [Spectrum 2022]. (*when source code
available or specified by users.)

B APPENDIX: FEATHERWEIGHT GO
For the reviewer’s convenience, this section provides more explanations of the syntax and the full

definitions of the typing system from those in [Griesemer et al. 2020].

B.1 Featherweight Go Syntax
We explain the syntax of FG in Figure 3. The meta variables for field (𝑓 ), method (𝑚), variable

(𝑥), structure type names (𝑡𝑆 , 𝑢𝑆 ), and interface type names (𝑡𝐼 , 𝑢𝐼 ) range over their respective

namespaces. Types (𝑡,𝑢) range over both structures and interfaces. A program (𝑃 ) is given by a

sequence of declarations (𝐷) along with amain function which acts as the top-level expression.

We often shorten this as 𝑃 = 𝐷 ⊲ 𝑒 .

Expressions in FG are variables (𝑥 ), method calls (𝑒.𝑚(𝑒)), structure literals (𝑡𝑆 {𝑒}), field selection
(𝑒.𝑓 ), and type assertion (𝑒.(𝑡)).

Declarations (𝐷) can take three forms; structure, interface, or method declaration. The struc-

ture declaration (struct {𝑓 𝑡}) gives a sequence of typed fields whereas the interface declaration

(interface {𝑆}) gives the method specifications which instances of that interface should implement.

A method specification (𝑚(𝑥 𝑡) 𝑡 ) prescribes the name and type for implementing methods.

A method declaration (func(𝑥 𝑡𝑆 ) 𝑚(𝑥 𝑡) 𝑡𝑟 {𝑏}) defines a method𝑚 on the structure 𝑡𝑆 . This

method accepts the arguments 𝑥 𝑡 , which along with the receiver 𝑥 are passed to the method body 𝑏.

On a successful computation this method will return a result of type 𝑡𝑟 . The special main function

acts as the entrance function, and thus has no receiver, arguments or return value.

B.2 Featherweight Go Typing
For the reviewer’s convinience, we reproduce the typing system with the minimum explainations.

Figure 22 gives the FG typing rules and auxiliary functions. Environment Γ is a sequence of typed

variable names (𝑥 : 𝑡 ). We assume all variables in Γ are distinct, and write Γ, 𝑥 : 𝑡 if 𝑥 ∉ dom(Γ).
Implements. The implements relation (𝑡 <: 𝑢) holds if type 𝑡 is a subtype of type 𝑢, understood

as a relationship in which a variable of type 𝑢 can be substituted by any variable of type 𝑡 . A
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Implements and well-formed types 𝑡 <: 𝑢 𝑡 ok

[<:s]

𝑡𝑆 <: 𝑡𝑆

[<:i]

methods (𝑡 ) ⊇ methods (𝑡𝐼 )
𝑡 <: 𝑡𝐼

[t-named]

𝑡 ∈ tdecls (𝐷)
𝑡 ok

Well-formed method specifications and type literals 𝑆 ok 𝑇 ok

[t-specification]

distinct (𝑥) 𝑡 ok 𝑡 ok

𝑚 (𝑥 𝑡 ) 𝑡 ok

[t-struct]

distinct (𝑓 ) 𝑡 ok

struct {𝑓 𝑡} ok

[t-interface]

unique (𝑆) 𝑆 ok

interface {𝑆} ok

Well formed declarations 𝐷 ok

[t-type]

𝑇 ok
type 𝑡 𝑇 ok

[t-func] 𝑡𝑆 ok 𝑡 ok 𝑢 ok
𝑥 : 𝑡𝑆 , 𝑥 : 𝑡 ⊢ 𝑒 : 𝑢 distinct (𝑥, 𝑥)

func (this 𝑡𝑆 ) 𝑚 (𝑥 𝑡 ) 𝑢 {return𝑒} ok

Expressions Γ ⊢ 𝑒 : 𝑡

[t-var]

(𝑥 : 𝑡 ) ∈ Γ

Γ ⊢ 𝑥 : 𝑡

[t-literal] 𝑡𝑆 ok
Γ ⊢ 𝑒 : 𝑡 (𝑓 𝑢) = 𝑓 𝑖𝑒𝑙𝑑𝑠 (𝑡𝑆 ) 𝑡 <: 𝑢

Γ ⊢ 𝑡𝑆{𝑒} : 𝑡𝑆

[t-call]

Γ ⊢ 𝑒 : 𝑡 Γ ⊢ 𝑒 : 𝑡 (𝑚 (𝑥 𝑢) 𝑢) ∈ methods (𝑡 ) 𝑡 <: 𝑢

Γ ⊢ 𝑒.𝑚 (𝑒) : 𝑢

[t-field]

Γ ⊢ 𝑒 : 𝑡𝑆 (𝑓 𝑢) = fields (𝑡𝑆 )
Γ ⊢ 𝑒.𝑓𝑖 : 𝑢𝑖

[t-assert𝑆 ]

𝑡𝑆 ok Γ ⊢ 𝑒 : 𝑢𝐼 𝑡𝑆 <: 𝑢𝐼

Γ ⊢ 𝑒.(𝑡𝑆 ) : 𝑡𝑆

[t-assert𝐼 ]

𝑡𝐼 ok Γ ⊢ 𝑒 : 𝑢𝐼

Γ ⊢ 𝑒.(𝑡𝐼 ) : 𝑡𝐼

[t-stupid]

𝑡 ok Γ ⊢ 𝑒 : 𝑢𝑆

Γ ⊢ 𝑒.(𝑡 ) : 𝑡

Programs 𝑃 ok

[t-prog]

distinct (tdecls (𝐷)) distinct (mdecls (𝐷)) 𝐷 ok ∅ ⊢ 𝑒 : 𝑡

package main; 𝐷 func main(){_ = 𝑒} ok

methods (𝑡𝑆 ) = {𝑚𝑀 | (func (𝑥 𝑡𝑆 ) 𝑚𝑀 {return𝑒 }) ∈ 𝐷 }

type 𝑡𝐼 interface {𝑆} ∈ 𝐷

methods (𝑡𝐼 ) = 𝑆

𝑚𝑀1,𝑚𝑀2 ∈ 𝑆 implies𝑀1 = 𝑀2

unique (𝑆)

(type 𝑡𝑆 struct {𝑓 𝑡}) ∈ 𝐷

fields (𝑡𝑆 ) = 𝑓 𝑡

tdecls (𝐷) = [𝑡 | (type 𝑡 𝑇 ) ∈ 𝐷 ] mdecls (𝐷) = [𝑡𝑆 .𝑚 | (func (𝑥 𝑡𝑆 ) 𝑚𝑀 {return𝑒 }) ∈ 𝐷 ]

Fig. 22. Typing and auxiliary function.

structure can only only be implemented by itself ([<:s]). An interface 𝑡𝐼 can be implemented by any

type that possesses at least the same methods as 𝑡𝐼 ([<:i]).

Well-formedness. A well-formed term is one that is not only syntactically correct, but one that

also has semantic meaning. 𝑥 ok holds if 𝑥 is well formed according to the typing rules, with the

extension Γ ⊢ 𝑥 ok if the term is well-formed in the environment Γ. A type declaration is well-formed

when the type it declares is well-formed ([t-type]) which happens when it is either a structure with

distinct and well formed fields ([t-struct]), or an interface with unique and well-formed method

specifications ([t-interface]). Method specifications are well-formed when all argument types and

the return type are well-formed ([t-specification]).

Method body and statement type checking. The typing judgement Γ ⊢ 𝑥 : 𝑡 holds if the term

𝑥 has type 𝑡 in the environment Γ. A method (func (𝑥 𝑡𝑆 ) 𝑚(𝑥 𝑡) 𝑢 {𝑏}) is well-formed if the type
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of the receiver, the return, and all arguments are well-formed, with all names being distinct from

one another.

A structure literal (𝑡𝑆 {𝑒}) is well-typed when each field instantiation (𝑒) subtypes the field’s

declared type ([t-literal]). Field assignment and access follow the order of declaration.

Expression type checking. Given an expression 𝑒 of type 𝑢 the type assertion 𝑒.(𝑡) casts the
expression to type 𝑡 . There are three non-overlapping type assertion rules. The Go specification

only permits type assertions from an interface type, which informs rules [t-assert𝐼 ]. An assertion

between two interface types ([t-assert𝐼 ]) does not statically check the assertion since the expression

𝑒 could evaluate to a term that implements the target type 𝑡 . Assertion from an interface type 𝑢 to

a non-interface type 𝑡 is allowed only if 𝑡 implements 𝑢 ([t-assert𝑆 ]).

Not part of the Go specification and not need for compile time checking, the rule [tr-stupid] is

only used for the type assertion 𝑒.(𝑡) where 𝑒 has evaluated to a concrete non-interface type. This

assertion provides no utility at compile time as an assertion from a non-interface type is either

a no-op or it unnecessarily erases type information – yet without this rule a term may become

ill-typed during evaluation.

More detailed explanations can be found in [Griesemer et al. 2020, § 3.3].

Theorem B.1 (Preservation). (Theorem 3.3 in [Griesemer et al. 2020, § 3.3]) If ∅ ⊢ 𝑒 : 𝑢 and
𝑒 −→ 𝑒 ′ then ∅ ⊢ 𝑒 ′ : 𝑡 for some 𝑡 <: 𝑢.

Theorem B.2 (Progress). (Theorem 3.4 in [Griesemer et al. 2020, § 3.3]) If ∅ ⊢ 𝑒 : 𝑢 then 𝑒 is
either a value, 𝑒 −→ 𝑒 ′ for some 𝑒 ′ or 𝑒 panics.

C APPENDIX: FEATHERWEIGHT GENERIC GO
For the reviewer’s convenience, this section provides the definitions and more explanations of the

typing system from those in [Griesemer et al. 2020].

C.1 Featherweight Generic Go Typing Rules
Judgements are extended with the type environment Δ which relates types than type names. The

subtyping Δ ⊢ 𝜏 <: 𝜎 uses Δ where both 𝜏 and 𝜎 may have type parameters in Δ; judgement

Δ ⊢ 𝜏 ok says the argument of channel type (𝜏 ) is well-formed w.r.t. all type parameters declared in

Δ; a method declaration is well-formed if Φ and Ψ are well-formed types formal of the receiver

and the method, yielding Δ (Φ; Ψ ok Δ) and the receiver’s type is declared by Φ′
such that Φ <: Φ′

.

Judgements for expressions, method calls and processes are extended w.r.t. Δ, accordingly.
This is so that interface subtyping ([<:i]) may ensure that type parameters still implement all

methods that an interface requires. The type formal subtyping rule (Φ <: Ψ) ensures that if the
type substitution Φ :=Δ 𝜏 is well-defined, then Ψ :=Δ 𝜏 is well-defined.

We deviate from [Griesemer et al. 2020] in our typing for [t-func]. We require that receiver types

formal are identical to those in the structures declaration. This more closely follows the official

Go proposal [Taylor and Griesemer 2021]. Rather than require the developer to write a full type

formal which must exactly match the structure’s declaration they instead provide a receiver type

parameter list which is converted to a type formal by looking up the structure type formal.

When looking at method typing it becomes necessary to consider two types formal, with the

methods type formal (Ψ) depending on the receiver’s (Φ). A methods type environment Δ is

constructed by the well formed composition of the receiver and method’s types formal (Φ; Ψ ok Δ).
This environment is well formed when Φ is well formed in an empty environment while method’s

type formal Ψ is well formed under Φ. Type formal well formedness (Φ ⊢ Ψ ok) holds when there is

no repetition in the type parameters between Φ and Ψ and all bounds in Ψ are well formed in the

Φ,Ψ environment. This definition allows mutually recursive bounds in Ψ.
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Implements and well-formed types Δ ⊢ 𝜏 <: 𝜎 Φ <: Ψ

[<:-param]

Δ ⊢ 𝛼 <: 𝛼

[<:s]

Δ ⊢ 𝜏𝑆 <: 𝜏𝑆

[<:i]

methodsΔ (𝜏) ⊇ methodsΔ (𝜎𝐼 )
Δ ⊢ 𝜏 <: 𝜎𝐼

[<:-formal]

⊢ 𝜏𝐼 <: 𝜎𝐼

(𝛼 𝜏𝐼 ) <: (𝛽 𝜎𝐼 )

Well-formed types and actuals Δ ⊢ 𝜏 ok Δ ⊢ 𝜙 ok

[t-param]

(𝛼 : 𝜏𝐼 ) ∈ Δ

Δ ⊢ 𝛼 ok

[t-named]

Δ ⊢ 𝜙 ok type 𝑡 [Φ] 𝑇 ∈ 𝐷 𝜂 = (Φ :=Δ 𝜙)
Δ ⊢ 𝑡 [𝜙 ] ok

[t-actual]

Δ ⊢ 𝜏 ok
Δ ⊢ 𝜏 ok

Well-formed types formal Φ ⊢ Ψ ok Φ;Ψ ok Δ

[t-formal]

distinct (𝛽, 𝛼) 𝛼 𝜏𝐼 , 𝛽 𝜎𝐼 ⊢ 𝜏𝐼 ok

𝛽 𝜎𝐼 ⊢ 𝛼 𝜏𝐼 ok

[t-nested]

∅ ⊢ Φ ok Φ ⊢ Ψ ok Δ = Φ,Ψ

Φ;Ψ ok Δ

Well-formed method specifications, type literals, and declarations Φ ⊢ 𝑆 ok Φ ⊢ 𝑇 ok 𝐷 ok

[t-specification] Φ;Ψ ok Δ
distinct (𝑥) Δ ⊢ 𝜏 ok Δ ⊢ 𝜏 ok

Φ ⊢𝑚 [Ψ] (𝑥 𝜏) 𝜏 ok

[t-struct]

distinct (𝑓 ) Φ ⊢ 𝜏 ok

Φ ⊢ struct {𝑓 𝜏} ok

[t-interface]

unique (𝑆) Φ ⊢ 𝑆 ok

Φ ⊢ interface {𝑆} ok

[t-type]

∅ ⊢ Φ ok Φ ⊢ 𝑇 ok
type 𝑡 [Φ] 𝑇 ok

[t-func] distinct (𝑥, 𝑥) (type 𝑡𝑆 [Φ] 𝑇 ) ∈ 𝐷

Φ;Ψ ok Δ Δ ⊢ 𝜏 ok Δ ⊢ 𝜎 ok Δ;𝑥 : 𝑡𝑆 [𝛼 ], 𝑥 : 𝜏 ⊢ 𝑒 : 𝜏 Δ ⊢ 𝜏 <: 𝜎

func (this 𝑡𝑆 [𝛼 ]) 𝑚 [Ψ] (𝑥 𝜏) 𝜎 {return𝑒} ok

Expressions and Programs Γ ⊢ 𝑒 : 𝑡 𝑃 ok

[t-var]

(𝑥 : 𝜏) ∈ Γ

Δ; Γ ⊢ 𝑥 : 𝜏

[t-literal] Δ ⊢ 𝜏𝑆 ok
Δ; Γ ⊢ 𝑒 : 𝜏 (𝑓 𝜎) = fields (𝜏𝑆 ) 𝜏 <: 𝜎

Δ; Γ ⊢ 𝜏𝑆{𝑒} : 𝜏𝑆

[t-call] (𝑚 [Ψ] (𝑥 𝜎) 𝜎) ∈ methodsΔ (𝜏)
Δ; Γ ⊢ 𝑒 : 𝜏 Δ; Γ ⊢ 𝑒 : 𝜏 𝜂 = (Ψ :=Δ 𝜓 ) Δ ⊢ 𝜏 <: 𝜎 [𝜂 ]

Δ; Γ ⊢ 𝑒.𝑚 [𝜓 ] (𝑒) : 𝜎 [𝜂 ]

[t-field]

Δ; Γ ⊢ 𝑒 : 𝜏𝑆 (𝑓 𝜎) = fields (𝜏𝑆 )
Δ; Γ ⊢ 𝑒.𝑓𝑖 : 𝜎𝑖

[t-assert𝑆 ]

Δ ⊢ 𝜏𝑆 ok Δ; Γ ⊢ 𝑒 : 𝜎𝐽 Δ ⊢ 𝜏𝑆 <: boundsΔ (𝜎𝐽 )
Δ; Γ ⊢ 𝑒.(𝜏𝑆 ) : 𝜏𝑆

[t-assert𝐼 ]

𝜏𝐽 ok Δ; Γ ⊢ 𝑒 : 𝜎𝐽

Δ; Γ ⊢ 𝑒.(𝜏𝐽 ) : 𝜏𝐽

[t-stupid]

Δ ⊢ 𝜏 ok Δ; Γ ⊢ 𝑒 : 𝜎𝑆

Δ; Γ ⊢ 𝑒.(𝜏) : 𝜏

[t-prog]

distinct (tdecls (𝐷)) distinct (mdecls (𝐷)) 𝐷 ok ∅; ∅ ⊢ 𝑒 : 𝑡

package main; 𝐷 func main(){_ = 𝑒} ok

𝜂 = (𝛼 := 𝜏)
𝜂 = (𝛼 𝜏𝐼 := 𝜏)

𝜂 = (𝛼 𝜏𝐼 := 𝜙) Δ ⊢ 𝛼 <: 𝜏𝐼 [𝜂 ]
𝜂 = (𝛼 𝜏𝐼 :=Δ 𝜙)

(type 𝑡𝑆 [Φ] struct {𝑓 𝜏}) ∈ 𝐷 𝜂 = (Φ := 𝜙)

fields (𝑡𝑆 [𝜙 ]) = 𝑓 𝜏 [𝜂 ]

methodsΔ (𝑡𝑆 [𝜙 ]) = {𝑚𝑀 [𝜂 ] | (func (𝑥 𝑡𝑆 [𝛼 ]) 𝑚𝑀 {return𝑒 }) ∈ 𝐷, (type 𝑡𝑆 [Φ] 𝑇 ) ∈ 𝐷,𝜂 = (Φ :=Δ 𝜙) }

type 𝑡𝐼 [Φ] interface {𝑆} ∈ 𝐷 𝜂 = (Φ := 𝜙)
methodsΔ (𝑡𝐼 [𝜙 ]) = 𝑆 [𝜂 ]

(𝛼 : 𝜏𝐼 ) ∈ Δ

methodsΔ (𝛼) = methodsΔ (𝜏𝐼 )
𝑚𝑀1,𝑚𝑀2 ∈ 𝑆 implies𝑀1 = 𝑀2

unique (𝑆)

tdecls (𝐷) = [𝑡 | (type 𝑡 [Φ] 𝑇 ) ∈ 𝐷 ] mdecls (𝐷) = [𝑡𝑆 .𝑚 | (func (𝑥 𝑡𝑆 [𝛼 ]) 𝑚𝑀 {return𝑒 }) ∈ 𝐷 ]
(𝛼 : 𝜏𝐼 ) ∈ Δ

boundsΔ (𝛼) = 𝜏𝐼 boundsΔ (𝜏𝑆 ) = 𝜏𝑆 boundsΔ (𝜏𝐼 ) = 𝜏𝐼

(func (this 𝑡𝑆 [𝛼 ]) 𝑚 [Ψ] (𝑥 𝜏) 𝜏 {return𝑒}) ∈ 𝐷 𝜃 = (𝛼,Ψ := 𝜙,𝜓 )
body (𝑡𝑆 [𝜙 ] .𝑚 [𝜓 ]) = (𝑥 : 𝑡𝑆 [𝜙 ], 𝑥 : 𝜏) .𝑒 [𝜃 ]

Fig. 23. Typing and auxiliary function.
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A type declaration includes a type formal, this type formal is the environment that either the

structure or interface must be well formed under. A structure is well formed in an environment Φ
when each of its fields is well formed under Φ. An interface is well formed in Φ when each method

is specifies is also well formed under Φ.
A method specifications is well-formed (Φ ⊢𝑚[Ψ] (𝑥 𝜏) 𝜏 ok) when its composite type environ-

ment is well-formed (Φ; Ψ ok Δ) and if its argument and return types are well-formed under that

composite type environment.

Theorem C.1 (Preservation). (Theorem 4.3 in [Griesemer et al. 2020, § 4]) If ∅; ∅ ⊢ 𝑒 : 𝜏 and
𝑒 −→ 𝑒 ′ then ∅; ∅ ⊢ 𝑒 ′ : 𝜏 ′, for some 𝜏 ′ such that ∅; ∅ ⊢ 𝜏 ′ <: 𝜏 .

Theorem C.2 (Progress). (Theorem 3.4 in [Griesemer et al. 2020, § 3.3]) If ∅; ∅ ⊢ 𝑒 : 𝜏 then 𝑒 is
either a value, 𝑒 −→ 𝑒 ′ for some 𝑒 ′ or 𝑒 panics.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 168. Publication date: October 2022.



Generic Go to Go 168:35

D APPENDIX OF SECTION 5
This section provides the detailed proofs for the main theorem.

Definition D.1 (Dictionary map). To simplify definitions we sometimes use a functional notation

(J−K) for the dictionary-passing translation, defined as

J𝑒KΔ;𝜂;Γ = 𝑒‡ where Δ;𝜂; Γ ⊢ 𝑒 Z⇒ 𝑒‡

J𝑃K = 𝑃‡ where ⊢ 𝑃 Z⇒ 𝑃‡

JΓKΔ;𝜂;Γ = dom(Γ) : Any, dict : typeDict (Δ(𝜂−1 (dict)))

While JΓKΔ;𝜂;Γ seems complex at first glance it simply erases all variables already in Γ while adding

appropriate dictionary variables. This is done by finding the type parameter name for dict𝑖 from
𝜂−1 and then getting the type bound of the type parameter from Δ. This type bound is used to

decide the type of the dict𝑖 variable. Note that 𝜂 is bijective since we assume all type parameter

names and dictionary variable names are unique, as such 𝜂−1 exists.

Lemma 5.1. Let 𝑒 be an FG expression. Assume ∅ ⊢ 𝑒 : 𝑢.
(1) =⇒ is deterministic, i.e., if 𝑒 =⇒ 𝑒1 and 𝑒 =⇒ 𝑒2, then 𝑒1 = 𝑒2.
(2) _ is confluent, i.e., if 𝑒 _ 𝑒1 and 𝑒 _ 𝑒2, then there exists 𝑒 ′ such that 𝑒1 _ 𝑒 ′ and 𝑒2 _ 𝑒 ′.

Proof. (1) This case is shown by the deterministic nature of −→ and the fact that =⇒⊆−→+
.

(2) This case is immediate for most 𝜌dict cases. Only the mName(𝑡,𝑚){}.Apply(𝑒) case pro-

vides a complexity. Once we realise, however, that each 𝑒𝑖 is used linearly in the method

mName(𝑡,𝑚){}.Apply, as created by meth_ptr (), it becomes clear that this case does not

interact with any reductions in 𝑒 .

□

Lemma D.1 (Type specialisation is resolved by _ ). Let Δ = 𝛼 : 𝜏𝐼 , expression 𝑒 be of type
Δ; Γ ⊢ 𝑒 : 𝜏 , and 𝜎 be a type actual such that Δ ⊢ 𝜎 <: 𝜏𝐼 . Let the map 𝜂 = {𝛼 ↦→ dict}. then
J𝑒KΔ;𝜂;Γ [dict :=makeDict ∅;∅ (𝜎, 𝜏𝐼 )] _∗ J𝑒 [𝛼 := 𝜎]K∅;∅;Γ

Proof. By induction on 𝑒 , we apply the substitution of each 𝛼𝑖 in turn. Note that dictionary

𝜂 (𝛼𝑖 ) is either of the form 𝑣 .dict𝑖 when 𝛼𝑖 comes from the receiver or dict𝑖 when it is a method

parameter. We can limit our considerations to the latter case as if the former holds we can transform

it to the latter as 𝜌dict resolves the desired receiver field access.

Case : Rule [d-dictcall]

We assume that 𝛼 : 𝜏𝐼 ; Γ ⊢ 𝑒 : 𝛼 such that the translation of 𝑒.𝑚[𝜓 ] (𝑒) is

Δ;𝜂; Γ ⊢ 𝑒.𝑚[𝜓 ] (𝑒) Z⇒ 𝜂 (𝛼𝑖 ).𝑚.Apply(J𝑒KΔ;𝜂;Γ, J𝜓KΔ;𝜂;Γ, J𝑒KΔ;𝜂;Γ)

𝜂 (𝛼𝑖 ) is either of the form 𝑣 .dict𝑖 when 𝛼𝑖 comes from the receiver or dict𝑖 when it is a

method parameter. In the former case 𝜌dict resolves the desired receiver field access, so we

may limit our considerations the latter.

Let 𝜎 = 𝑢 [𝜙] and 𝜏𝐼 = 𝑡𝐼 [𝜙 ′] then applying the substitution 𝜃 = [dict :=makeDict ∅;∅ (𝜎, 𝜏𝐼 )]
we produce the term

makeDict ∅;∅ (𝑢 [𝜙], 𝑡𝐼 [𝜙 ′]).𝑚.Apply(J𝑒KΔ;𝜂;Γ [𝜃 ], J𝜓KΔ;𝜂;Γ [𝜃 ], J𝑒2KΔ;𝜂;Γ [𝜃 ])

where method𝑚 is in the method abstractors of the given dictionary, such that

makeDict ∅;∅ (𝑢 [𝜙], 𝑡𝐼 [𝜙 ′]) = typeDict (𝑡𝐼 ){𝑣,mName(𝑢,𝑚), 𝑣}
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𝜌dict resolves as follows

typeDict (𝑡𝐼 ){· · · }.𝑚.Apply(J𝑒KΔ;𝜂;Γ [𝜃 ], J𝜓KΔ;𝜂;Γ [𝜃 ], J𝑒KΔ;𝜂;Γ [𝜃 ])

_ mName(𝑢,𝑚).Apply(J𝑒KΔ;𝜂;Γ [𝜃 ], J𝜓KΔ;𝜂;Γ [𝜃 ], J𝑒KΔ;𝜂;Γ [𝜃 ])

_ J𝑒KΔ;𝜂;Γ [𝜃 ] .(𝑢).𝑚(J𝜓KΔ;𝜂;Γ [𝜃 ], J𝑒KΔ;𝜂;Γ [𝜃 ])
By the induction hypothesis

J𝑒KΔ;𝜂;Γ [𝜃 ] .(𝑢).𝑚(J𝜓KΔ;𝜂;Γ [𝜃 ], J𝑒KΔ;𝜂;Γ [𝜃 ]) _∗

J𝑒 [𝛼 := 𝜎]K∅;∅;Γ .(𝑢).𝑚(J𝜓 [𝛼 := 𝜎]K∅;∅;Γ, J𝑒 [∅; ∅; Γ] [𝛼 := 𝜎]KΔ;𝜂;Γ)
Note that we can only apply induction on the arguments to𝑚 because 𝜌dict is defined on the

pre-congruence evaluation context 𝐶 . We explicitly do not use 𝜌sim as part of this induction.

To resolve J𝑒.𝑚[𝜓 ] (𝑒) [𝛼 := 𝜎]K∅;∅;Γ we need first observe that the type substitution specifies

all type variables by our assumptions. This means that the dictionary-passing translation

uses the homomorphic rule [d-call]. We also know that the type of 𝑒 (𝛼) is mapped to 𝜎 (𝑢 [𝜙]).
J𝑒.𝑚[𝜓 ] (𝑒) [𝛼 := 𝜎]K∅;∅;Γ

= J𝑒 [𝛼 := 𝜎] .𝑚[𝜓 [𝛼 := 𝜎]] (𝑒 [𝛼 := 𝜎])K∅;∅;Γ
= J𝑒 [𝛼 := 𝜎]K∅;∅;Γ .(𝑢).𝑚(J𝜓 [𝛼 := 𝜎]K∅;∅;Γ, J𝑒 [𝛼 := 𝜎]K∅;∅;Γ)

Case : Rule [d-assert] Δ, Γ ⊢ 𝑒.(𝛼) : 𝛼
We start by considering the 𝑒.(𝛼) [𝛼 := 𝜎] side.

J𝑒.(𝛼) [𝛼 := 𝜎]K∅;∅;Γ = J𝑒 [𝛼 := 𝜎] .(𝜎)K∅;∅;Γ = type_meta∅ (𝜎).tryCast(J𝑒 [𝛼 := 𝜎]K∅;∅;Γ)
We now look at the lhs. Let 𝜁 = (−._type) ◦ 𝜂

J𝑒.(𝛼)KΔ;𝜂;Γ = type_meta𝜁 (𝛼).tryCast(J𝑒KΔ;𝜂;Γ)
= 𝜁 (𝛼).tryCast(J𝑒KΔ;𝜂;Γ)
= (𝜂 (𝛼)._type).tryCast(J𝑒KΔ;𝜂;Γ)
= dict._type.tryCast(J𝑒KΔ;𝜂;Γ)

If 𝜏𝐼 = 𝑡𝐼 [𝜙] then we have that makeDict ∅;∅ (𝜎, 𝜏𝐼 ) = typeDict (𝑡𝐼 ){𝑣, type_meta𝜁 (𝜎)}. We

also know that 𝜎 is well typed in the empty environment (⊢ 𝜎 <: 𝜏𝐼 ) so type_meta𝜁 (𝜎) =
type_meta∅ (𝜎). With the previously derived J𝑒.(𝛼)KΔ;𝜂;Γ = dict._type.tryCast(J𝑒KΔ;𝜂;Γ)

dict._type.tryCast(J𝑒KΔ;𝜂;Γ) [dict := typeDict (𝑡𝐼 ){𝑣, type_meta∅ (𝜎)}]
= typeDict (𝑡𝐼 ){𝑣, type_meta∅ (𝜎)}._type.tryCast(J𝑒KΔ;𝜂;Γ [dict := typeDict (𝑡𝐼 ){𝑣, type_meta∅ (𝜎)}])
_ type_meta∅ (𝜎).tryCast(J𝑒KΔ;𝜂;Γ [dict := typeDict (𝑡𝐼 ){𝑣, type_meta∅ (𝜎)}])

We can now apply the induction hypothesis

type_meta∅ (𝜎).tryCast(J𝑒KΔ;𝜂;Γ [dict := typeDict (𝑡𝐼 ){𝑣, type_meta∅ (𝜎)}])
_∗ type_meta∅ (𝜎).tryCast(J𝑒 [𝛼 := 𝜎]K∅;∅;Γ)

Case : Rule [d-assert] Δ, Γ ⊢ 𝑒.(𝜏) : 𝜏 If 𝛼 ∉ fv(𝜏) then this proof is immediate by induction.

If we instead assume that 𝛼 ∈ fv(𝜏) then with 𝜁 = (−._type) ◦ 𝜂
J𝑒.(𝜏)KΔ;𝜂;Γ [dict :=makeDict ∅;∅ (𝜎, 𝜏𝐼 )]

= type_meta𝜁 (𝜏).tryCast(J𝑒KΔ;𝜂;Γ) [dict :=makeDict ∅;∅ (𝜎, 𝜏𝐼 )]
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We further assume that 𝜏 = 𝑡 [𝛼, 𝜎]. While it may be that 𝛼 is a type specialisation of a type

specialisation (𝑡 [𝑢 [𝛼]]), this case does not significantly alter the proof, so we assume 𝜏 is as

given. Naturally this also applies if 𝛼 is used more than once in 𝜏 (we assume 𝛼 ∉ fv(𝜎)).
Computing type_meta𝜁 (𝜏) we get mdata_name(𝑡){𝜁 (𝛼), type_meta𝜁 (𝜎)},
with 𝜁 (𝛼) = dict._type.

= type_meta𝜁 (𝜏).tryCast(J𝑒KΔ;𝜂;Γ) [dict :=makeDict ∅;∅ (𝜎, 𝜏𝐼 )]

= mdata_name(𝑡){dict._type, type_meta𝜁 (𝜎)}.tryCast(J𝑒KΔ;𝜂;Γ) [dict :=makeDict ∅;∅ (𝜎, 𝜏𝐼 )]

Furthermore we know makeDict ∅;∅ (𝜎, 𝜏𝐼 ) = typeDict (𝑡𝐼 ){𝑣, type_meta𝜁 (𝜎)}, and so the

above substitution becomes

= mdata_name(𝑡){dict._type, type_meta𝜁 (𝜎)}.tryCast(J𝑒KΔ;𝜂;Γ) [dict :=makeDict ∅;∅ (𝜎, 𝜏𝐼 )]
= mdata_name(𝑡){ typeDict (𝑡𝐼 ){𝑣, type_meta𝜁 (𝜎)}

._type, type_meta𝜁 (𝜎)}.tryCast(J𝑒KΔ;𝜂;Γ [dict :=makeDict ∅;∅ (𝜎, 𝜏𝐼 )])

_ mdata_name(𝑡){ type_meta𝜁 (𝜎), type_meta𝜁 (𝜎)}.tryCast(J𝑒KΔ;𝜂;Γ [dict :=makeDict ∅;∅ (𝜎, 𝜏𝐼 )])

Applying induction

mdata_name(𝑡){ type_meta𝜁 (𝜎), type_meta𝜁 (𝜎)}.tryCast(J𝑒KΔ;𝜂;Γ [dict :=makeDict ∅;∅ (𝜎, 𝜏𝐼 )])

_∗ mdata_name(𝑡){ type_meta𝜁 (𝜎), type_meta𝜁 (𝜎)}.tryCast(J𝑒 [𝛼 := 𝜎]K∅;∅;Γ)

We now look to J𝑒.(𝜏) [𝛼 := 𝜎]K∅;∅;Γ . We again assume that 𝜏 = 𝑡 [𝛼, 𝜎] with 𝛼 ∉ fv(𝜎)
J𝑒.(𝜏) [𝛼 := 𝜎]K∅;∅;Γ

= J𝑒.(𝑡 [𝛼, 𝜎]) [𝛼 := 𝜎]K∅;∅;Γ
= J𝑒 [𝛼 := 𝜎] .(𝑡 [𝜎, 𝜎])K∅;∅;Γ
= type_meta∅ (𝑡 [𝜎, 𝜎]).tryCast(J𝑒 [𝛼 := 𝜎]K∅;∅;Γ)

= mdata_name(𝑡){ type_meta𝜁 (𝜎), type_meta𝜁 (𝜎)}.tryCast(J𝑒 [𝛼 := 𝜎]K∅;∅;Γ)
□

Lemma D.2 (Subtype preservation). Let ⊢ 𝑃 Z⇒ 𝑃‡. If ∅ ⊢ 𝑢 [𝜓 ] <: 𝑡 [𝜙] in 𝑃 then 𝑢 <: 𝑡 in 𝑃‡.

Proof. By case analysis on ∅ ⊢ 𝑢 [𝜓 ] <: 𝑡 [𝜙]. □

Lemma D.3 (Value substitution is compositional upto _ ). Let Γ = 𝑥 : 𝜏 , expression 𝑒 be of
type ∅; Γ ⊢ 𝑒 : 𝜏 ′, and expressions 𝑣 be typed by ∅; ∅ ⊢ 𝑣 : 𝜎𝑆 such that ∅ ⊢ 𝜎𝑆 <: 𝜏 . We have that
J𝑒K∅,∅,Γ [𝑥 := J𝑣K∅,∅,∅] _∗ J𝑒 [𝑥 := 𝑣]K∅;∅;∅

Proof. By induction on the translation rule used, we apply the substitution of each 𝑥𝑖 in turn.

Case : Rule [d-call]

[d-call]

∅; Γ ⊢ 𝑒 : 𝑡 [𝜙] 𝜓 ‡ = makeDict ∅;∅ (𝜓,Ψ) (𝑚[Ψ] (𝑥 𝜏) 𝜏) ∈ methodsΔ (𝑡 [𝜙])
∅; ∅; Γ ⊢ 𝑒.𝑚[𝜓 ] (𝑒) Z⇒ J𝑒K∅;∅;Γ .(𝑡).𝑚(𝜓 ‡, J𝑒K∅;∅;Γ)

By the substitution lemma [Griesemer et al. 2020, Lemma 4.2] we have
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(1) ∅; ∅ ⊢ 𝑒 [𝑥 := 𝑣] : 𝑢 [𝜓 ′]
(2) ∅ ⊢ 𝑢 [𝜓 ′] <: 𝑡 [𝜙]

and

(3) ∅; ∅; ∅ ⊢ 𝑒 [𝑥 := 𝑣] .𝑚[𝜓 ] (𝑒 [𝑥 := 𝑣]) Z⇒ J𝑒 [𝑥 := 𝑣]K∅;∅;∅ .(𝑢).𝑚(𝜓 ‡, J𝑒 [𝑥 := 𝑣]K∅;∅;∅)
By lemma D.2 (2) we have that 𝑢 <: 𝑡 . We now have

(4) J𝑒K∅;∅;Γ .(𝑡).𝑚(𝜓 ‡, J𝑒K∅;∅;Γ) _ J𝑒K∅;∅;Γ .(𝑢).𝑚(𝜓 ‡, J𝑒K∅;∅;Γ)
and by the induction we have

(5) J𝑒K∅;∅;Γ .(𝑢).𝑚(𝜓 ‡, J𝑒K∅;∅;Γ) _∗ J𝑒 [𝑥 := 𝑣]K∅;∅;∅ .(𝑡).𝑚(𝜓 ‡, J𝑒 [𝑥 := 𝑣]K∅;∅;∅)
□

Lemma D.1 (Method specification simulaiton preserves substitution). Let 𝛼 : 𝜏𝐼 ⊢ 𝑀 ok,
and assume 𝜎 such that ∅ ⊢ 𝜎 <: 𝜏𝐼 . We also assume this = mdata_name(𝑡𝐼 ){type_meta∅ (𝜎)}. For
𝜁 = {𝛼 ↦→ this._type} it holds that sig_mdata𝜁 (𝑀) −→∗

s sig_mdata∅ (𝑀 [𝛼 := 𝜎]).

Proof. Since each 𝛼𝑖 is distinct we can consider each separately. We begin by noting that

arity(𝑀 [𝛼𝑖 := 𝜎𝑖 ]) = arity(𝑀) = 𝑛. We also define a suitable 𝜁 ′ for the param_index{} map, such

that 𝛼𝑖 ∉ dom(𝜁 ′).
sig_mdata∅ (𝑀 [𝛼𝑖 := 𝜎𝑖 ])

= spec_mdata𝑛{type_meta𝜁 ′ (𝜏 [𝛼𝑖 := 𝜎𝑖 ])}
sig_mdata𝜁 (𝑀)

= spec_mdata𝑛{type_meta𝜁 ′,𝜁 (𝜏)}

Where𝜏 = 𝜏0, 𝜏1, 𝜏2 for𝑀 = [𝛽 𝜏0] (𝑥 𝜏1)𝜏2. It now suffices to show that for all𝜏 . type_meta𝜁 ′,𝜁 (𝜏) −→∗
s

type_meta𝜁 ′ (𝜏 [𝛼𝑖 := 𝜎𝑖 ]). This is done by induction on 𝜏 .

Case : 𝜏 = 𝛼𝑖
The term type_meta𝜁 ′ (𝛼𝑖 [𝛼𝑖 := 𝜎𝑖 ]) becomes type_meta𝜁 ′ (𝜎𝑖 )which is equal to type_meta∅ (𝜎𝑖 )
since 𝜎𝑖 is defined outside the scope of 𝜁 ′. The other term type_meta𝜁 ′,𝜁 (𝛼𝑖 ) is equal to
(𝜁 ′, 𝜁 ) (𝛼𝑖 ) which by the definition of 𝜁 is

mdata_name(𝑡𝐼 ){type_meta∅ (𝜎𝑖 )}._type𝑖 −→s type_meta∅ (𝜎𝑖 ).
Case : 𝜏 = 𝛽 where 𝛽 ! = 𝛼𝑖 Both terms are immediately equal to 𝜁 ′(𝛽).
Case : 𝜏 = 𝑡 [𝜏] By induction on each 𝜏𝑖 .

□

Lemma D.2. If Φ :=Δ 𝜙 with 𝜂 such that dom(𝜂) = dom(Δ) then type(makeDict𝜂,Δ (𝜙,Φ)) <:

asParam(Φ).

Proof. Immediately from the definition of makeDict () and asParam(). □

Lemma 5.2 (Type preservation of expressions). Let Δ;𝜂; Γ ⊢ 𝑒 Z⇒ 𝑒‡ and JΓKΔ;𝜂;Γ be the FG
environment where all variables in Γ are erased (Any) and each dictionary in 𝜂 is appropriately typed
according to the bound in Δ. If Δ; Γ ⊢ 𝑒 : 𝜏 then (1) If 𝜏 = 𝛼 or 𝜏𝐼 , then JΓKΔ;𝜂;Γ ⊢ 𝑒‡ : Any. (2) If
𝜏 = 𝑡𝑆 [𝜙], then either JΓKΔ;𝜂;Γ ⊢ 𝑒‡ : Any or JΓKΔ;𝜂;Γ ⊢ 𝑒‡ : 𝑡𝑆 .

Proof. By induction on the type of 𝑒 .

Case : Rule [t-field]

(1) Δ; Γ ⊢ 𝑒.𝑓 : 𝜏
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(2) Δ;𝜂; Γ ⊢ 𝑒.𝑓 Z⇒ 𝑒‡ .(𝑡𝑆 ).𝑓
For (1) to hold 𝑒 must be of type 𝑡𝑆 [𝜙]. By the induction hypothesis, either JΓKΔ;𝜂;Γ ⊢ J𝑒KΔ;𝜂;Γ :

Any or JΓKΔ;𝜂;Γ ⊢ J𝑒KΔ;𝜂;Γ : 𝑡𝑆 . In either case J𝑒KΔ;𝜂;Γ .(𝑡𝑆 ) is well typed by [t-assert𝑆 ] or [t-stupid]

(resp.). Since 𝑓 is a field of type 𝑡𝑆 [𝜙] it must also be a field of 𝑡𝑆 . We get the final typing

judgement JΓKΔ;𝜂;Γ ⊢ J𝑒KΔ;𝜂;Γ .(𝑡𝑆 ).𝑓 : Any.
Case : Rule [t-var] Immediate by our definition of JΓKΔ;𝜂;Γ .
Case : Rule [t-literal]

(1) ⊢ 𝑡𝑆 [𝜙]{𝑒} : 𝑡𝑆 [𝜙]
(2) Δ;𝜂; Γ ⊢ 𝑡𝑆 [𝜙]{𝑒} Z⇒ 𝑡𝑆{𝑒‡, 𝜙‡}
(3) 𝜙‡ = makeDict𝜂,Δ (𝜙,Φ)
(4) type 𝑡𝑆 [Φ] struct {𝑥 𝜏} by inversion on [t-literal]

(5) ⊢ type 𝑡𝑆 [Φ] struct {𝑥 𝜏} Z⇒ type 𝑡𝑆 struct {𝑥 Any, asParam(Φ)}
by [d-struct]

Each 𝑒
‡
𝑖
implements the Any type while by Lemma D.2, 𝜙‡

implements asParam(Φ). As such
(6) Γ ⊢ 𝑡𝑆{𝑒‡, 𝜙‡} : 𝑡𝑆

Case : Rule [t-call]

(1) Γ ⊢ 𝑒.𝑚[𝜓 ] (𝑒) : 𝜏
Subcase : Γ ⊢ 𝑒 : 𝛼

(2) Δ;𝜂; Γ ⊢ 𝑒.𝑚[𝜓 ] (𝑒) Z⇒ 𝜂 (𝛼).𝑚.Apply(𝑒‡,𝜓 ‡, 𝑒‡)
Since (1) we know that the bounds of 𝛼 (𝑡𝐼 [𝜙] = Δ(𝛼)) contains the method 𝑚 and that

the type of the dictionary 𝜂 (𝛼) is typeDict (𝑡𝐼 ) we know that typeDict (𝑡𝐼 ) has a field𝑚. We

further know that the field𝑚 has type Function𝑛 where 𝑛 = |𝜓 | + |𝑒 |. Because all arguments

to the Apply method are of type Any the rhs of (2) is well typed.

Subcase : Γ ⊢ 𝑒 : 𝑡 [𝜙]
(3) Δ;𝜂; Γ ⊢ 𝑒.𝑚[𝜓 ] (𝑒) Z⇒ 𝑒‡ .𝑚(𝜓 ‡, 𝑒‡)

We can combine the cases where 𝑡 is a structure or an interface since [d-meth] and [d-spec]

both do the same thing. If 𝑚[Ψ] (𝑥 𝜏) 𝜏 ∈ methodsΔ (𝑡 [𝜙]) then the translation produces

𝑚(Ψ‡, 𝑥 Any) Any ∈ methods(𝑡).
□

Theorem 5.2 (Operational correspondence). Let 𝑃 ok where 𝑃 = 𝐷 ⊲ 𝑒 and let ⊢ 𝐷 ⊲ 𝑒 Z⇒ 𝐷‡ ⊲ 𝑒‡.
(a) If 𝑒 −→ 𝑑 , then there exists 𝑑‡ such that ∅; ∅; ∅ ⊢ 𝑑 Z⇒ 𝑑‡ and 𝑒‡ =⇒ _∗𝑑‡.
(b) If 𝑒‡ =⇒ 𝑒 ′ where 𝑒 is not a type assertion error, then there exists 𝑑 such that 𝑒 −→ 𝑑 and there

exists 𝑑‡ such that ∅; ∅; ∅ ⊢ 𝑑 Z⇒ 𝑑‡ and 𝑒 ′ _∗ 𝑑‡.
(c) If 𝑒‡ =⇒ 𝑒 ′ where 𝑒 is a type assertion error, then 𝑒 ′ is a type assertion error.
(d) If 𝑒 is a type assertion error, then there exists an 𝑒 ′ such that 𝑒‡ =⇒ 𝑒 ′ and 𝑒 ′ is a type assertion

error.

Proof. By induction over the assumed reduction.

Case : Rule [r-fields] — (a) direction

(1) 𝑡𝑆 [𝜙]{𝑣}.𝑓𝑖 −→ 𝑣𝑖

(2) ∅; ∅; ∅ ⊢ 𝑡𝑆 [𝜙]{𝑣}.𝑓𝑖 Z⇒ 𝑡𝑆{𝑣‡,makeDict ∅;∅ (𝜙,Φ)}.𝑓𝑖
Inversion on [r-fields] (1) and the the definition of fields gives us

(3) (𝑓 𝜏) [𝜂] = fields(𝑡𝑆 [𝜙])
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(4) type 𝑡𝑆 [Φ] struct {𝑓 𝜏} ∈ 𝐷

Applying the dictionary translation rule [d-struct] to (4) we get

(5) type 𝑡𝑆 struct {𝑓 Any, dict 𝑢} ∈ 𝐷‡

(6) (𝑓 Any, dict 𝑢) = fields(𝑡𝑆 )
(7) 𝑡𝑆{𝑣‡,makeDict ∅;∅ (𝜙,Φ)}.𝑓𝑖 −→ 𝑣

‡
𝑖

by [r-fields] (2, 6)

(8) ∅; ∅; ∅ ⊢ 𝑣𝑖 Z⇒ 𝑣
‡
𝑖

by inversion on [d-value] (2)

Case : Rule [r-fields] — (b) direction mostly the same as the (a) direction, since there are no

_ reductions available to 𝑡𝑆{𝑣‡,makeDict ∅;∅ (𝜙,Φ)}.𝑓𝑖 as both 𝑣‡ and makeDict ∅;∅ (𝜙,Φ) are
values.

Case : Rule [r-call] — (a) direction

We begin by stating our assumptions explicitly

(1) 𝑣 .𝑚[𝜓 ] (𝑣) −→ 𝑒 [𝜃 ] [this := 𝑣, 𝑥 := 𝑣]
(2) ∅; ∅ ⊢ 𝑣 .𝑚[𝜓 ] (𝑣) : 𝜏 [𝜃 ]

with 𝑣 of the form

(3) 𝑣 = 𝑡𝑆 [𝜙]{𝑣1}
(4) ∅; ∅ ⊢ 𝑣 : 𝑡𝑆 [𝜙]

By analysing the proof tree of (1) using inversion on [r-call] and the definition of body we get

(5) (this : 𝑡𝑆 [𝜙], 𝑥 : 𝜏).𝑒 [𝜃 ] = body(type(𝑣).𝑚[𝜓 ])
(6) 𝜃 = (Φ,Ψ := 𝜙,𝜓 )
(7) func (this 𝑡𝑆 [𝛼]) 𝑚[Ψ] (𝑥 𝜏) 𝜏 {return 𝑒} ∈ 𝐷

and so 𝑣 .𝑚[𝜓 ] (𝑣) is translated using rule [d-call]

(8) ∅; ∅; ∅ ⊢ 𝑣 .𝑚[𝜓 ] (𝑣) Z⇒ 𝑣‡.(𝑡𝑆 ) .𝑚(makeDict ∅;∅ (𝜓,Ψ), 𝑣‡)
where 𝑣‡ is defined using [d-value]

(9) ∅; ∅; ∅ ⊢ 𝑡𝑆 [𝜙]{𝑣1} Z⇒ 𝑡𝑆{𝑣
‡
1
,makeDict ∅,∅ (𝜙,Φ)}

With Φ = (𝛼 𝜏𝐼 ) and Ψ = (𝛽 𝑢𝐼 [Ψ′]), the method definition (7) is translated using [d-meth]

(10) 𝜂 = 𝛼 ↦→ this.dict, 𝛽 ↦→ dict
(11) Φ,Ψ;𝜂; this : 𝑡𝑆 [𝛼], 𝑥 : 𝜏 ⊢ 𝑒 Z⇒ 𝑒‡

(12) ⊢ func (this 𝑡𝑆 [𝛼]) 𝑚[Ψ] (𝑥 𝜏) 𝜏 {return 𝑒}

Z⇒ func (this 𝑡𝑆 ) 𝑚(dict typeDict (𝑢𝐼 ), 𝑥 Any) Any {return 𝑒‡}

From here on we write 𝑒‡ using the functional notation

𝑒‡ = J𝑒KΦ,Ψ;𝜂;this:𝑡𝑆 [𝛼 ],𝑥 :𝜏
Now that we have fleshed out the translation we begin to look at the translated term’s

reductions. For our value 𝑣 of type 𝑡𝑆 [𝛼], the translated term 𝑣‡ is both a value and of type 𝑡𝑆 .

This is immediately evident by [d-value]. As such the assertion is always resolved by −→e.

(13) 𝑣‡ .(𝑡𝑆 ).𝑚(makeDict ∅;∅ (𝜓,Ψ), 𝑣‡) −→e 𝑣
‡ .𝑚(makeDict ∅;∅ (𝜓,Ψ), 𝑣‡)

resolving the method call to the implementation in (12)

(14) 𝑣‡ .𝑚(makeDict ∅;∅ (𝜓,Ψ), 𝑣‡)
−→ J𝑒KΦ,Ψ;𝜂;this:𝑡𝑆 [𝛼 ],𝑥 :𝜏 [this := 𝑣‡, dict :=makeDict ∅;∅ (𝜓,Ψ), 𝑥 := 𝑣‡]

By the definition of 𝑣‡, we can separate the substitution this := 𝑣‡ into

this := 𝑣‡, this.dict := 𝑣‡ .dict meaning that we can rewrite the reduced term and then

apply Lemma D.1 and D.3
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(15) J𝑒KΦ,Ψ;𝜂;this:𝑡𝑆 [𝛼 ],𝑥 :𝜏 [this := 𝑣‡, dict :=makeDict ∅;∅ (𝜓,Ψ), 𝑥 := 𝑣‡]
= J𝑒KΦ,Ψ;𝜂;this:𝑡𝑆 [𝛼 ],𝑥 :𝜏 [this.dict := 𝑣‡ .dict, dict :=

makeDict ∅;∅ (𝜓,Ψ), this := 𝑣‡, 𝑥 := 𝑣‡]
= J𝑒KΦ,Ψ;𝜂;this:𝑡𝑆 [𝛼 ],𝑥 :𝜏 [this.dict :=makeDict ∅;∅ (𝜙,Φ), dict :=

makeDict ∅;∅ (𝜓,Ψ), this := 𝑣‡, 𝑥 := 𝑣‡]
_∗ J𝑒 [𝜃 ]K∅;∅;this:𝑡𝑆 [𝛼 ],𝑥 :𝜏 [this := 𝑣‡, 𝑥 := 𝑣‡]
_∗ J𝑒 [𝜃 ] [this := 𝑣, 𝑥 := 𝑣]K∅;∅;∅

Case : Rule [r-call] — (b) direction

(1) ∅; ∅ ⊢ 𝑡𝑆 [𝜙]{𝑣1}.𝑚[𝜓 ] (𝑣2) : 𝜏 [𝜃 ]
(2) ∅; ∅; ∅ ⊢ 𝑡𝑆 [𝜙]{𝑣1}.𝑚[𝜓 ] (𝑣2) Z⇒ 𝑡𝑆{J𝑣1K∅;∅;∅, 𝜙‡}.(𝑡𝑆 ).𝑚(𝜓 ‡, J𝑣2K∅;∅;∅)
(3) 𝜙‡ = makeDict ∅;∅ (𝜙,Φ)
(4) 𝜓 ‡ = makeDict ∅;∅ (𝜓,Ψ)

By the welltypedness of (1) we know that

(5) func (this 𝑡𝑆 [𝛼]) 𝑚[Ψ] (𝑥 𝜏) 𝜏 {return 𝑒} ∈ 𝐷

(6) type 𝑡𝑆 [Φ] struct {𝑦 𝜎} ∈ 𝐷

Translating (5) with Δ = Φ,Ψ where Φ = 𝛼 𝜏𝐼 , Ψ = 𝛽 𝜎𝐼 , and 𝜂 = 𝛼 ↦→ this.dict, 𝛽 ↦→ dict
we get

(7) func (this 𝑡𝑆 ) 𝑚(𝑥 Any) Any {returnJ𝑒KΔ;𝜂;Γ} ∈ 𝐷‡

The (b) direction assumes a reduction on the translated term.We first note thatmakeDict ∅;∅ (· · ·)
is always a value. We then consider the trivial −→e reduction available before taking the

[r-call] step.

(8) 𝑡𝑆{J𝑣1K∅;∅;∅, 𝜙‡}.(𝑡𝑆 ).𝑚(𝜓 ‡, J𝑣2K∅;∅;∅)
−→e 𝑡𝑆{J𝑣1K∅;∅;∅, 𝜙‡}.𝑚(𝜓 ‡, J𝑣2K∅;∅;∅)
−→ J𝑒KΔ;𝜂;Γ [this := 𝑡𝑆{J𝑣1K∅;∅;∅, 𝜙‡}, 𝑥 := J𝑣2K∅;∅;∅, dict :=𝜓 ‡]
= J𝑒KΔ;𝜂;Γ [this.dict := 𝑡𝑆{J𝑣1K∅;∅;∅, 𝜙‡}.dict, dict :=𝜓 ‡] [this :=

𝑡𝑆{J𝑣1K∅;∅;∅, 𝜙‡}, 𝑥 := J𝑣2K∅;∅;∅]

When we consider the _ reduction we can relate this.dict := 𝑡𝑆{J𝑣1K∅;∅;∅, 𝜙‡}.dict and

this.dict := 𝜙‡
. This allows us to use Lemma D.1 and D.3.

(9) J𝑒KΔ;𝜂;Γ [this.dict := 𝑡𝑆{J𝑣1K∅;∅;∅, 𝜙‡}.dict, dict :=𝜓 ‡] [this :=
𝑡𝑆{J𝑣1K∅;∅;∅, 𝜙‡}, 𝑥 := J𝑣2K∅;∅;∅]

_∗ J𝑒 [Φ := 𝜙,Ψ := Ψ]K∅;∅;Γ [this := 𝑡𝑆{J𝑣1K∅;∅;∅, 𝜙‡}, 𝑥 := J𝑣2K∅;∅;∅]
_∗ J𝑒 [Φ := 𝜙,Ψ := Ψ] [this := 𝑡𝑆 [𝜙]{𝑣1}, 𝑥 := 𝑣2]K∅;∅;∅

We now look at the (only) reduction available to the original term

(10) 𝑡𝑆 [𝜙]{𝑣1}.𝑚[𝜓 ] (𝑣2) −→ 𝑒 [Φ := 𝜙,Ψ :=𝜓 ] [this := 𝑡𝑆 [𝜙]{𝑣1}, 𝑥 := 𝑣2]
Case : Rule [r-assert] — (a) direction

(1) 𝑡𝑆 [𝜙]{𝑣}.(𝜏) −→ 𝑡𝑆 [𝜙]{𝑣}
(2) ∅; ∅; ∅ ⊢ 𝑡𝑆 [𝜙]{𝑣}.(𝜏) Z⇒ type_meta∅ (𝜏).tryCast(𝑡𝑆{𝑣‡, 𝜙‡})
(3) type 𝑡𝑆 [Φ] 𝑇 ∈ 𝐷

(4) 𝜙‡ = makeDict ∅;∅ (𝜙,Φ)
(5) ∅ ⊢ 𝑡𝑆 [𝜙] <: 𝜏 by inversion on [r-assert] (1)
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As such we know that type_meta∅ (𝜏).tryCast should return (as opposed to panicking) if

and only if ∅ ⊢ 𝑡𝑆 [𝜙] <: 𝜏
Subcase : 𝜏 = 𝑢𝐼 [𝜓 ] For (5) to hold the following must hold

(6) methods∅ (𝑡𝑆 [𝜙]) ⊇ methods∅ (𝑢𝐼 [𝜓 ])
(7) type 𝑢𝐼 [Ψ] interface {𝑆} ∈ 𝐷

For all𝑚𝑀𝑢 ∈ 𝑆 there must exist a function

func (this 𝑡𝑆 [𝛼]) 𝑚𝑀𝑡 {return 𝑒} ∈ 𝐷

such that

𝑀𝑢 [Ψ :=𝜓 ] = 𝑀𝑡 [Φ := 𝜙]
To show that this is property is preserved we need first elaborate a number of other definitions.

Let Ψ = (𝛽 𝜎𝐼 ), and the map 𝜁 be {𝛽 ↦→ this._type}.
(8) ⊢ type 𝑢𝐼 [Ψ] interface {𝑆} Z⇒

type𝑢𝐼 interface {𝑆‡, spec_mdata(𝑆)}
func (this mdata_name(𝑢𝐼 )) tryCast(𝑥 Any) Any {{

if(𝑥 .(𝑢𝐼 ). spec_name(𝑚) () ! = sig_mdata𝜁 (𝑀𝑢)) {panic }
���𝑚𝑀𝑢 ∈ 𝑆

}
;

return𝑥
}

And for Φ = (𝛼 𝜏𝐼 ) and 𝜙 = 𝜏 the map 𝜁 ′ = {𝛼 ↦→ this.dict𝑖 ._type}.
(9) ⊢ func (this 𝑡𝑆 [𝛼]) 𝑚𝑀𝑡 {return 𝑒}

Z⇒ func (this 𝑡𝑆 ) spec_name(𝑚) () spec_mdata𝑛 {return sig_mdata𝜁 ′ (𝑀𝑡 )}
(10) 𝜙‡ = makeDict ∅;∅ (𝜏, 𝛼 𝜏𝐼 ) = typeDict (𝑡𝐼 ){𝑝𝑡𝑟, type_meta∅ (𝜏)}

Wemay now consider the reduction of the translated term type_meta∅ (𝜏).tryCast(𝑡𝑆{𝑣‡, 𝜙‡})
(11) type_meta∅ (𝑢𝐼 [𝜓 ]).tryCast(𝑡𝑆{𝑣‡, 𝜙‡})

−→{
if(𝑡𝑆{𝑣‡, 𝜙‡}.(𝑢𝐼 ). spec_name(𝑚) () ! = sig_mdata𝜁 (𝑀𝑢 )) {panic }

���𝑚𝑀𝑢 ∈ 𝑆

}
;

return 𝑡𝑆{𝑣‡, 𝜙‡}
We can now use Lemma D.1 to resolve 𝜁

(12)

{
if(𝑡𝑆{𝑣‡, 𝜙‡}.(𝑢𝐼 ). spec_name(𝑚) () ! = sig_mdata∅ (𝑀𝑢 [Ψ :=𝜓 ])) {panic }

���𝑚𝑀𝑢 ∈ 𝑆

}
;

return 𝑡𝑆{𝑣‡, 𝜙‡}
Using the 𝜌sim we can further reduce the term. While this would happen in a sequential

order we simplify the presentation of the proof. We begin by looking at 𝑡𝑆{𝑣‡, 𝜙‡}.(𝑢𝐼 ). Since
∅ ⊢ 𝑡𝑆 [𝜙] <: 𝑢𝐼 [𝜓 ] we know that 𝑡𝑆 must posses each method defined by 𝑢𝐼 .

(13) −→∗
s

{
if(𝑡𝑆{𝑣‡, 𝜙‡}. spec_name(𝑚) () ! = sig_mdata∅ (𝑀𝑢 [Ψ :=𝜓 ])) {panic }

���𝑚𝑀𝑢 ∈ 𝑆

}
;

return 𝑡𝑆{𝑣‡, 𝜙‡}
−→∗

s

{
if(sig_mdata𝜁 ′ (𝑀𝑡 ) ! = sig_mdata∅ (𝑀𝑢 [Ψ :=𝜓 ])) {panic }

���𝑚𝑀𝑢 ∈ 𝑆

}
;

return 𝑡𝑆{𝑣‡, 𝜙‡}
We can now use Lemma D.1 to resolve 𝜁 ′

(14) −→∗
s

{
if(sig_mdata∅ (𝑀𝑡 [Φ := 𝜙]) ! = sig_mdata∅ (𝑀𝑢 [Ψ :=𝜓 ])) {panic }

��𝑚𝑀𝑢 ∈ 𝑆
}
;

return 𝑡𝑆{𝑣‡, 𝜙‡}

Since𝑀𝑢 [Ψ :=𝜓 ] = 𝑀𝑡 [Φ := 𝜙], no if is triggered.
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(15) −→∗
s
return 𝑡𝑆{𝑣‡, 𝜙‡}

−→s 𝑡𝑆{𝑣‡, 𝜙‡}

which is the desired term.

Subcase : 𝜏 = 𝑡𝑆 [𝜙] For (5) to hold if 𝜏 is a structure type then it must be precisely the same

type as target of the assertion.

(16) type_meta∅ (𝜏).tryCast(𝑡𝑆{𝑣‡, 𝜙‡})
= mdata_name(𝑡𝑆 ){ type_meta∅ (𝜙)}.tryCast(𝑡𝑆{𝑣‡, 𝜙‡})
−→ {if mdata_name(𝑡𝑆 ){ type_meta∅ (𝜙)}._type𝑖 ! =

𝑡𝑆{𝑣‡, 𝜙‡}.(𝑡𝑆 ).dict𝑖 ._type {panic }}𝑖<𝑛 ;return 𝑡𝑆{𝑣‡, 𝜙‡}

Once again we use 𝜌sim to resolve assertion. We also use the same proof simplification and

ignore explicit sequentiality.

(17) {if mdata_name(𝑡𝑆 ){ type_meta∅ (𝜙)}._type𝑖 ! =
𝑡𝑆{𝑣‡, 𝜙‡}.(𝑡𝑆 ) .dict𝑖 ._type {panic }}𝑖<𝑛 ;return 𝑡𝑆{𝑣‡, 𝜙‡}

−→∗
s
{if type_meta∅ (𝜙𝑖 ) ! = 𝑡𝑆{𝑣‡, 𝜙‡}.(𝑡𝑆 ) .dict𝑖 ._type {panic }}𝑖<𝑛 ;return 𝑡𝑆{𝑣‡, 𝜙‡}
−→∗

s
{if type_meta∅ (𝜙𝑖 ) ! = 𝑡𝑆{𝑣‡, 𝜙‡}.dict𝑖 ._type {panic }}𝑖<𝑛 ;return 𝑡𝑆{𝑣‡, 𝜙‡}

−→∗
s
{if type_meta∅ (𝜙𝑖 ) ! = 𝜙

‡
𝑖
._type {panic }}𝑖<𝑛 ;return 𝑡𝑆{𝑣‡, 𝜙‡}

−→∗
s
{if type_meta∅ (𝜙𝑖 ) ! = type_meta∅ (𝜙𝑖 ) {panic }}𝑖<𝑛 ;return 𝑡𝑆{𝑣‡, 𝜙‡}

−→∗
s
𝑡𝑆{𝑣‡, 𝜙‡}

Case : Rule [r-assert] — (b) direction

This direction follows closely the (a) direction other than that it does not assume

𝑡𝑆 [𝜙]{𝑣}.(𝜏) −→ 𝑡𝑆 [𝜙]{𝑣}. Yet by our assumption that 𝑡𝑆 [𝜙]{𝑣}.(𝜏) is not a type assertion
error this reduction must exist. It then suffices to show that the source and target terms’

reductions match, which is given in (a).

Case : Rule [r-assert] — (c) direction

We first note that 𝑒 = 𝑣 .(𝜏) is the only case for (c) as no other term can produce a panic,

and that =⇒ is defined as the greatest reduction available. As such for 𝑒‡ =⇒ 𝑒 ′ there is no
further 𝑒 ′ −→s.

(1) 𝑣 .(𝜏) panic
(2) ∅ ⊢ type(𝑣) ≮: 𝜏

(3) ⊢ 𝑣 .(𝜏) Z⇒ type_meta∅ (𝜏).tryCast(J𝑣K∅;∅;∅)
(4) 𝑣 = 𝑡𝑆 [𝜙]{𝑣}
(5) J𝑣K∅;∅;∅ = 𝑡𝑆{𝑣‡,makeDict ∅;∅ (𝜙,Φ)}

Subcase : 𝜏 = 𝑢𝐼 [𝜓 ]
For (2) to hold there must be at least one method 𝑚𝑀 ∈ methods∅ (𝜏) such that 𝑚𝑀 ∉

methods∅ (type(𝑣)).
Let Ψ = (𝛽 𝜎𝐼 ), and the map 𝜁 be {𝛽 ↦→ 𝑡ℎ𝑖𝑠 ._type}.

(6) ⊢ type 𝑢𝐼 [Ψ] interface {𝑆} Z⇒
type𝑢𝐼 interface {𝑆‡, spec_mdata(𝑆)}
func (this mdata_name(𝑢𝐼 )) tryCast(𝑥 Any) Any {{

if(𝑥 .(𝑢𝐼 ). spec_name(𝑚) () ! = sig_mdata𝜁 (𝑀𝑢)) {panic }
���𝑚𝑀𝑢 ∈ 𝑆

}
;

return𝑥
}
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The translated term will always be able to make the reduction

(7) type_meta∅ (𝜏).tryCast(J𝑣K∅;∅;∅) −→{
if(J𝑣K∅;∅;∅ .(𝑢𝐼 ). spec_name(𝑚) () ! = sig_mdata𝜁 (𝑀𝑢)) {panic }

���𝑚𝑀𝑢 ∈ 𝑆

}
;

return𝑥
For convenience we assume that the problematic method𝑚 is the first to be checked. If this

is not the case then we may reduce all ok checks using −→s as described in the [r-assert] (a)

case.

(8)

{
if(J𝑣K∅;∅;∅ .(𝑢𝐼 ). spec_name(𝑚) () ! = sig_mdata𝜁 (𝑀𝑢)) {panic }

���𝑚𝑀𝑢 ∈ 𝑆

}
;

return𝑥
−→∗

s
if(J𝑣K∅;∅;∅ .(𝑢𝐼 ). spec_name(𝑚) () ! = sig_mdata𝜁 (𝑀𝑢)) {panic }; · · ·

We now need to consider the two possible cases in which𝑚𝑀 ∉ methods∅ (type(𝑣)) could
hold. Either there is no method called𝑚 in methods∅ (type(𝑣)) or there is a method𝑚 but

with a different method signatures. In the former case the assertion 𝐸 [J𝑣K∅;∅;∅ .(𝑢𝐼 )] will panic
as by our assumption that translation will never introduce a name collision the method𝑚

will not be in methods(𝑡𝑆 ) (the methods of type(J𝑣K∅;∅;∅)).
In the latter we assume that for 𝑚𝑀𝑡 [Φ := 𝜙] ∈ methods∅ (type(𝑣)) and 𝑚𝑀𝑢 [Ψ := 𝜓 ] ∈
methods∅ (𝑢𝐼 [𝜓 ]) such that𝑀𝑡 [Φ := 𝜙] ! =𝑀𝑢 [Ψ :=𝜓 ] then the if branches to panic.
Let Φ = (𝛼 𝜏𝐼 ), 𝜙 = 𝜏 , and the map 𝜁 ′ = {𝛼 ↦→ this.dict𝑖 ._type}.

(9) ⊢ func (this 𝑡𝑆 [𝛼]) 𝑚𝑀𝑡 {return 𝑒}
Z⇒ func (this 𝑡𝑆 ) spec_name(𝑚) () spec_mdata𝑛 {return sig_mdata𝜁 ′ (𝑀𝑡 )}

(10) J𝑣K∅;∅;∅ = 𝑡𝑆{𝑣‡, typeDict (𝑡𝐼 ){𝑝𝑡𝑟, type_meta∅ (𝜏)}}
(11) if(J𝑣K∅;∅;∅ .(𝑢𝐼 ). spec_name(𝑚) () ! = sig_mdata𝜁 (𝑀𝑢)) {panic }; · · ·

−→s if(J𝑣K∅;∅;∅ . spec_name(𝑚) () ! = sig_mdata𝜁 (𝑀𝑢)) {panic }; · · ·
−→s if(sig_mdata𝜁 ′ (𝑀𝑡 ) ! = sig_mdata𝜁 (𝑀𝑢)) {panic }; · · ·

We can now apply Lemma D.1, first to the lhs then rhs

(12) if(sig_mdata𝜁 ′ (𝑀𝑡 ) ! = sig_mdata𝜁 (𝑀𝑢)) {panic }; · · ·
−→∗

s
if(sig_mdata∅ (𝑀𝑡 [Φ := 𝜙]) ! = sig_mdata∅ (𝑀𝑢 [Ψ :=𝜓 ])) {panic }; · · ·

By𝑀𝑡 [Φ := 𝜙] ! =𝑀𝑢 [Ψ :=𝜓 ] this reduces to the desired panic.
Subcase : 𝜏 = 𝑢𝑆 [𝜓 ]

(13) ⊢ type𝑢𝑆 [Φ] struct { · · · }
Z⇒ typemdata_name(𝑢𝑆 ) struct {_type _type_mdata}
func (this this mdata_name(𝑢𝑆 )) tryCast(𝑥 Any) Any {

𝑥 .(𝑢𝑆 ) ; {if this._type𝑖 ! = 𝑥 .(𝑢𝑆 ).dict𝑖 ._type {panic }}𝑖<𝑛 ;return𝑥
}

For type(𝑣) = 𝑡𝑆 [𝜙]. If 𝜏 is a struct then there are two case. Either 𝑢𝑆 ! = 𝑡𝑆 , or 𝑢𝑆 = 𝑡𝑆 but

for 𝜙 = 𝜎 and𝜓 = 𝜏 there exists an 𝑖 such that 𝜎𝑖 ! = 𝜏𝑖 .

We first consider the case 𝑢𝑆 ! = 𝑡𝑆 . Note that type(J𝑣K∅;∅;∅) = 𝑡𝑆 [𝜙].
(14) type_meta∅ (𝑢𝑆 [𝜓 ]).tryCast(𝑡𝑆{𝑣‡,makeDict ∅;∅ (𝜙,Φ)})

= mdata_name(𝑢𝑆 ){ type_meta∅ (𝜓 )}.tryCast(𝑡𝑆{𝑣‡,makeDict ∅;∅ (𝜙,Φ)})
−→ 𝑡𝑆{𝑣‡,makeDict ∅;∅ (𝜙,Φ)}.(𝑢𝑆 ) ; · · ·

By our assumption 𝑢𝑆 ! = 𝑡𝑆 we get the desired panic.
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We now consider the case of 𝑢𝑆 = 𝑡𝑆 but for 𝜙 = 𝜎 and 𝜓 = 𝜏 there exists an 𝑖 such that

𝜎𝑖 ! = 𝜏𝑖 .

(15) type_meta∅ (𝜏).tryCast(𝑡𝑆{𝑣‡,makeDict ∅;∅ (𝜙,Φ)})
= mdata_name(𝑡𝑆 ){ type_meta∅ (𝜓 )}.tryCast(𝑡𝑆{𝑣‡,makeDict ∅;∅ (𝜙,Φ)})
−→

𝑡𝑆{𝑣‡,makeDict ∅;∅ (𝜙,Φ)}.(𝑡𝑆 ) ; {if mdata_name(𝑢𝑆 ){ type_meta∅ (𝜓 )}._type𝑖 ! =

𝑡𝑆{𝑣‡,makeDict ∅;∅ (𝜙,Φ)}.(𝑡𝑆 ).dict𝑖 ._type {panic }}𝑖<𝑛 ;return · · ·
{if mdata_name(𝑢𝑆 ){ type_meta∅ (𝜓 )}._type𝑖 ! =

𝑡𝑆{𝑣‡,makeDict ∅;∅ (𝜙,Φ)}.(𝑡𝑆 ).dict𝑖 ._type {panic }}𝑖<𝑛 ;return · · ·
We once again only need to consider the (lowest) 𝑖 for which 𝜎𝑖 ! = 𝜏𝑖 . All prior if statement

pass as per [r-assert] (a).

(16) {if mdata_name(𝑢𝑆 ){ type_meta∅ (𝜓 )}._type𝑖 ! =

𝑡𝑆{𝑣‡,makeDict ∅;∅ (𝜙,Φ)}.(𝑡𝑆 ).dict𝑖 ._type {panic }}𝑖<𝑛 ;return · · ·
−→∗

s
if mdata_name(𝑢𝑆 ){ type_meta∅ (𝜓 )}._type𝑖 ! =

𝑡𝑆{𝑣‡,makeDict ∅;∅ (𝜙,Φ)}.(𝑡𝑆 ).dict𝑖 ._type {panic };return · · ·
−→s if type_meta∅ (𝜏𝑖 ) ! =

𝑡𝑆{𝑣‡,makeDict ∅;∅ (𝜙,Φ)}.(𝑡𝑆 ).dict𝑖 ._type {panic };return · · ·
−→s

if type_meta∅ (𝜏𝑖 ) ! = 𝑡𝑆{𝑣‡,makeDict ∅;∅ (𝜙,Φ)}.dict𝑖 ._type {panic };return · · ·
−→s if type_meta∅ (𝜏𝑖 ) ! =makeDict ∅;∅ (𝜎𝑖 ,Φ𝑖 )._type {panic };return · · ·
−→s if type_meta∅ (𝜏𝑖 ) ! = type_meta∅ (𝜎𝑖 ) {panic };return · · ·

by our assumption that 𝜏𝑖 ! = 𝜎𝑖 we get the desired panic.
Case : Rule [r-assert] — (d) direction

Once again we need only consider 𝑒 = 𝑣 .(𝜏). This case follows from case (c), but we must

first show that there exists at least an 𝑒‡ −→∗
e
−→ 𝑑 reduction. This 𝑑 then reduces by −→∗

s
to

𝑒 ′, where 𝑒 ′ is a type assertion error. We know that 𝑑 exists by observing that the translation

of 𝑣 .(𝜏) will always reduce (−→) by [r-call] on tryCast. This 𝑑 will then reduce (−→∗
s
) to 𝑒 ′,

which by the same logic as (c) is a type assertion error.

Case : Rule [r-context] — (a) direction

The only non-immediate case for [r-context] is when 𝐸 = □.𝑚[𝜓 ] (𝑣).

(1)

𝑒 −→ 𝑑

𝑒.𝑚[𝜓 ] (𝑣) −→ 𝑑.𝑚[𝜓 ] (𝑣)
(2) ∅; ∅ ⊢ 𝑒.𝑚[𝜓 ] (𝑣) : 𝜎
(3) ∅; ∅ ⊢ 𝑒 : 𝑡 [𝜙] by inversion on [t-call]

By preservation (lemma C.1)

(4) ∅; ∅ ⊢ 𝑑 : 𝑢 [𝜙 ′]
(5) ∅ ⊢ 𝑢 [𝜙 ′] <: 𝑡 [𝜙]

Translating 𝐸 [𝑒] and 𝐸 [𝑑] we get
(6) J𝐸 [𝑒]K∅;∅;∅ = J𝑒K∅;∅;∅ .(𝑡) .𝑚(𝜓 ‡, J𝑒K∅;∅;∅)
(7) J𝐸 [𝑑]K∅;∅;∅ = J𝑑K∅;∅;∅ .(𝑢).𝑚(𝜓 ‡, J𝑒K∅;∅;∅)
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By the induction hypothesis on 𝑒 −→ 𝑑

(8) J𝑒K∅;∅;∅ =⇒_∗ J𝑑K∅;∅;∅
Using the evaluation context □.(𝑡).𝑚(𝜓 ‡, J𝑒K∅;∅;∅)

(9) J𝑒K∅;∅;∅ .(𝑡).𝑚(𝜓 ‡, J𝑒K∅;∅;∅) =⇒_∗ J𝑑K∅;∅;∅ .(𝑡).𝑚(𝜓 ‡, J𝑒K∅;∅;∅)
Using synthetic assertion specialisation and D.2 on (5)

(10) J𝑑K∅;∅;∅ .(𝑡).𝑚(𝜓 ‡, J𝑒K∅;∅;∅) _ J𝑑K∅;∅;∅ .(𝑢).𝑚(𝜓 ‡, J𝑒K∅;∅;∅)
Case : Rule [r-context] — (a) direction

The only non-immediate case for [r-context] is for 𝐸 = □.𝑚[𝜓 ] (𝑣)
(1) ∅; ∅ ⊢ 𝑒 : 𝑡 [𝜙]
(2) J𝐸 [𝑒]K∅;∅;∅ = J𝑒K∅;∅;∅ .(𝑡).𝑚(𝜓 ‡, J𝑒K∅;∅;∅)
(3) J𝑒K∅;∅;∅ .(𝑡).𝑚(𝜓 ‡, J𝑒K∅;∅;∅) =⇒ 𝑒 ′.(𝑡).𝑚(𝜓 ‡, J𝑒K∅;∅;∅)

By inversion on the reduction =⇒ using context 𝐸 ′ = □.(𝑡).𝑚(𝜓 ‡, J𝑒K∅;∅;∅)
(4) J𝑒K∅;∅;∅ =⇒ 𝑒 ′

By the induction hypothesis on (4) there exists 𝑑

(5) 𝑒 −→ 𝑑

(6) 𝑒 ′ _∗ J𝑑K∅;∅;∅
(7) ∅; ∅ ⊢ 𝑑 : 𝑢 [𝜙 ′] by lemma C.1 (1)

(8) ∅ ⊢ 𝑢 [𝜙 ′] <: 𝑡 [𝜙]
Applying (6) on context 𝐶 = 𝐸 ′

we get that

(9) 𝑒 ′.(𝑡).𝑚(𝜓 ‡, J𝑒K∅;∅;∅) _∗ J𝑑K∅;∅;∅ .(𝑡).𝑚(𝜓 ‡, J𝑒K∅;∅;∅)
Using synthetic assertion specialisation and D.2 on (8)

(10) J𝑑K∅;∅;∅ .(𝑡).𝑚(𝜓 ‡, J𝑒K∅;∅;∅) _∗ J𝑑K∅;∅;∅ .(𝑢).𝑚(𝜓 ‡, J𝑒K∅;∅;∅)
Using [r-context] on (5) and context 𝐸.

(11) 𝐸 [𝑒] −→ 𝐸 [𝑑]
Finally, using the typing of 𝑑 (7) we get the translation of 𝐸 [𝑑]

(12) J𝐸 [𝑑]K∅;∅;∅ = J𝑑K∅;∅;∅ .(𝑢).𝑚(𝜓 ‡, J𝑒K∅;∅;∅)
□

Lemma 5.3 (Reduction rewrite). Let 𝑒1 _ 𝑒2 −→ 𝑒3 where 𝑒1 = 𝐶 [𝑑1], 𝑒2 = 𝐶 [𝑑2], and 𝑑1 −→ 𝑑2.
(1) If there exists an 𝐸 such that 𝐶 = 𝐸 then 𝑒1 −→2 𝑒3
(2) If there does not exists an 𝐸 such that 𝐶 = 𝐸 then 𝑒1 −→_ 𝑒3

Proof. (1) is immediate as if 𝑑1 −→ 𝑑2 then 𝐸 [𝑑1] −→ 𝐸 [𝑑2] −→ 𝑒3.

(2) is by case analysis on the reduction 𝑒2 −→ 𝑒3.

Case : Rule [r-field]: We have that 𝑒2 = 𝑡𝑆{𝑣}. There are two possible options for the

congruence evaluation context 𝐶 , either it is □ or it is of the form 𝑡𝑆{𝑣,□, 𝑣}. In either case

we get a contradiction as both cases are captured by the standard evaluation context.

Case : Rule [r-call]: Same logic as [r-field].

Case : Rule [r-assert]: Same logic as [r-field].

Case : Rule [r-context]: We begin with an assumption that the congruence context𝐶 deviated

from the standard context at the top level. Namely there does not exist 𝐸 ′
, 𝐶 ′

such that

𝐶 = 𝐸 ′[𝐶 ′]. We do this for clarity. In the situation that this does not hold, we may simply use

add 𝐸 ′
where appropriate.
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There are two cases for𝐶 ≠ 𝐸. Either𝐶 is of the form 𝑡𝑆{𝑣, 𝑒, 𝑒1,𝐶sub, 𝑒2} or 𝑣 .𝑚(𝑣, 𝑒, 𝑒1,𝐶sub, 𝑒2).
We focus on the former.

The starting term 𝑒1 is 𝑡𝑆{𝑣, 𝑒, 𝑒1,𝐶sub [𝑑1], 𝑒2}, the subsequent term 𝑒2 is 𝑡𝑆{𝑣, 𝑒, 𝑒1,𝐶sub [𝑑2], 𝑒2},
and the final term 𝑒3 is 𝑡𝑆{𝑣, 𝑑, 𝑒1,𝐶sub [𝑑2], 𝑒2} for some 𝑑 such that 𝑒 −→ 𝑑 .

Our initial term may make a standard reduction to 𝑒 ′
2
= 𝑡𝑆{𝑣, 𝑑, 𝑒1,𝐶sub [𝑑1], 𝑒2}, followed by

a _ reduction using 𝐶 ′′ = 𝑡𝑆{𝑣, 𝑑, 𝑒1,𝐶sub, 𝑒2} to 𝑒3.

□

Lemma 5.4 (Resolution to value). If 𝑒 _ 𝑣 then 𝑒 −→ 𝑣 .

Proof. Assume for contradiction that _∉−→. Either

Case : 𝐶 [𝑒 ′] _ 𝐶 [𝑑] = 𝑣 where 𝐶 is not the standard −→ reduction context. Since there

must be another −→ reduction from 𝐶 [𝑑] using the standard reduction context 𝐸 it cannot

be a value.

Case : 𝐶 [𝑒 ′.(𝑢)] _ 𝐶 [𝑒 ′.(𝑡)]. Immediate as 𝐶 [𝑒 ′.(𝑡)] is not a value.
□

E APPENDIX: MOTIVATING EXAMPLE TRANSLATED USING ERASURE

1 type List interface {

2 permute() Any

3 insert( val Any, i Any) Any

4 map(func(Any) Any) Any

5 len() Any }

6

7 type Cons struct {

8 head Any

9 tail Any

10 }

11 type Nil struct {}

12

13 // Naively produce all possible list orderings of list this.

14 func (this Cons) permute() Any {

15 if this.len().(int) == 1 {

16 return Cons{this, Nil{}}

17 } else {

18 return flatten(this.tail.permute().Map(

19 func(l Any) Any{

20 var l_new Any = Nil{}

21 for i := 0; i <= l.(List).len().(int); i++ {

22 l_new = Cons{l.(List).insert(this.head, i), l_new}

23 }

24 return l_new

25 }))}}

26 func (this Nil) permute() Any { return Nil{} }

Fig. 24. The erasure translation of the example in § 1
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