
Understanding Real-World Concurrency Bugs in Go
Tengfei Tu∗

BUPT, Pennsylvania State University
tutengfei.kevin@bupt.edu.cn

Xiaoyu Liu
Purdue University

liu1962@purdue.edu

Linhai Song
Pennsylvania State University

songlh@ist.psu.edu

Yiying Zhang
Purdue University
yiying@purdue.edu

Abstract
Go is a statically-typed programming language that aims
to provide a simple, efficient, and safe way to build multi-
threaded software. Since its creation in 2009, Go has ma-
tured and gained significant adoption in production and
open-source software. Go advocates for the usage of mes-
sage passing as the means of inter-thread communication
and provides several new concurrency mechanisms and li-
braries to ease multi-threading programming. It is important
to understand the implication of these new proposals and the
comparison of message passing and shared memory synchro-
nization in terms of program errors, or bugs. Unfortunately,
as far as we know, there has been no study on Go’s concur-
rency bugs.
In this paper, we perform the first systematic study on

concurrency bugs in real Go programs. We studied six pop-
ular Go software including Docker, Kubernetes, and gRPC.
We analyzed 171 concurrency bugs in total, with more than
half of them caused by non-traditional, Go-specific problems.
Apart from root causes of these bugs, we also studied their
fixes, performed experiments to reproduce them, and eval-
uated them with two publicly-available Go bug detectors.
Overall, our study provides a better understanding on Go’s
concurrency models and can guide future researchers and
practitioners in writing better, more reliable Go software
and in developing debugging and diagnosis tools for Go.

CCS Concepts • Computing methodologies → Con-
current programming languages; • Software and its en-
gineering → Software testing and debugging.

∗The work was done when Tengfei Tu was a visiting student at Pennsylvania
State University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS’19, April 13–17, 2019, Providence, RI, USA
© 2019 Association for Computing Machinery.
ACM ISBN ISBN 978-1-4503-6240-5/19/04. . . $15.00
https://doi.org/10.1145/3297858.3304069

Keywords Go; Concurrency Bug; Bug Study

ACM Reference Format:
Tengfei Tu, Xiaoyu Liu, Linhai Song, and Yiying Zhang. 2019. Un-
derstanding Real-World Concurrency Bugs in Go . In Proceedings
of 2019 Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS’19). ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3297858.3304069

1 Introduction
Go [20] is a statically typed language originally developed
by Google in 2009. Over the past few years, it has quickly
gained attraction and is now adopted by many types of soft-
ware in real production. These Go applications range from
libraries [19] and high-level software [26] to cloud infrastruc-
ture software like container systems [13, 36] and key-value
databases [10, 15].

A major design goal of Go is to improve traditional multi-
threaded programming languages and make concurrent pro-
gramming easier and less error-prone. For this purpose, Go
centers its multi-threading design around two principles:
1) making threads (called goroutines) lightweight and easy
to create and 2) using explicit messaging (called channel)
to communicate across threads. With these design princi-
ples, Go proposes not only a set of new primitives and new
libraries but also new implementation of existing semantics.

It is crucial to understand howGo’s new concurrency prim-
itives and mechanisms impact concurrency bugs, the type of
bugs that is the most difficult to debug and the most widely
studied [40, 43, 45, 57, 61] in traditional multi-threaded pro-
gramming languages. Unfortunately, there has been no prior
work in studying Go concurrency bugs. As a result, to date,
it is still unclear if these concurrency mechanisms actually
make Go easier to program and less error-prone to concur-
rency bugs than traditional languages.
In this paper, we conduct the first empirical study on

Go concurrency bugs using six open-source, production-
grade Go applications: Docker [13] and Kubernetes [36],
two datacenter container systems, etcd [15], a distributed
key-value store system, gRPC [19], an RPC library, and Cock-
roachDB [10] and BoltDB [6], two database systems.

In total, we have studied 171 concurrency bugs in these ap-
plications. We analyzed the root causes of them, performed
experiments to reproduce them, and examined their fixing

https://doi.org/10.1145/3297858.3304069
https://doi.org/10.1145/3297858.3304069

patches. Finally, we tested them with two existing Go con-
currency bug detectors (the only publicly available ones).
Our study focuses on a long-standing and fundamental

question in concurrent programming: betweenmessage pass-
ing [27, 37] and shared memory, which of these inter-thread
communication mechanisms is less error-prone [2, 11, 48].
Go is a perfect language to study this question, since it pro-
vides frameworks for both shared memory and message
passing. However, it encourages the use of channels over
shared memory with the belief that explicit message passing
is less error-prone [1, 2, 21].

To understand Go concurrency bugs and the comparison
between message passing and shared memory, we propose
to categorize concurrency bugs along two orthogonal dimen-
sions: the cause of bugs and their behavior. Along the cause
dimension, we categorize bugs into those that are caused
by misuse of shared memory and those caused by misuse of
message passing. Along the second dimension, we separate
bugs into those that involve (any number of) goroutines that
cannot proceed (we call them blocking bugs) and those that
do not involve any blocking (non-blocking bugs).

Surprisingly, our study shows that it is as easy tomake con-
currency bugs with message passing as with shared memory,
sometimes even more. For example, around 58% of blocking
bugs are caused by message passing. In addition to the viola-
tion of Go’s channel usage rules (e.g., waiting on a channel
that no one sends data to or close), many concurrency bugs
are caused by the mixed usage of message passing and other
new semantics and new libraries in Go, which can easily be
overlooked but hard to detect.

To demonstrate errors in message passing, we use a block-
ing bug from Kubernetes in Figure 1. The finishReq func-
tion creates a child goroutine using an anonymous func-
tion at line 4 to handle a request—a common practice in
Go server programs. The child goroutine executes fn() and
sends result back to the parent goroutine through channel
ch at line 6. The child will block at line 6 until the parent
pulls result from ch at line 9. Meanwhile, the parent will
block at select until either when the child sends result to ch
(line 9) or when a timeout happens (line 11). If timeout hap-
pens earlier or if Go runtime (non-deterministically) chooses
the case at line 11 when both cases are valid, the parent will
return from requestReq() at line 12, and no one else can
pull result from ch any more, resulting in the child being
blocked forever. The fix is to change ch from an unbuffered
channel to a buffered one, so that the child goroutine can
always send the result even when the parent has exit.
This bug demonstrates the complexity of using new fea-

tures in Go and the difficulty in writing correct Go programs
like this. Programmers have to have a clear understanding
of goroutine creation with anonymous function, a feature
Go proposes to ease the creation of goroutines, the usage
of buffered vs. unbuffered channels, the non-determinism
of waiting for multiple channel operations using select,

1 func finishReq(timeout time.Duration) r ob {

2 - ch := make(chan ob)

3 + ch := make(chan ob, 1)

4 go func() {

5 result := fn()

6 ch <- result // block

7 } ()

8 select {

9 case result = <- ch:

10 return result

11 case <- time.After(timeout):

12 return nil
13 }

14 }

Figure 1. A blocking bug caused by channel.

and the special library time. Although each of these fea-
tures were designed to ease multi-threaded programming, in
reality, it is difficult to write correct Go programs with them.

Overall, our study reveals new practices and new issues of
Go concurrent programming, and it sheds light on an answer
to the debate of message passing vs. shared memory accesses.
Our findings improve the understanding of Go concurrency
and can provide valuable guidance for future tool design.
This paper makes the following key contributions.
• We performed the first empirical study of Go concur-
rency bugs with six real-world, production-grade Go
applications.
• We made nine high-level key observations of Go con-
currency bug causes, fixes, and detection. They can
be useful for Go programmers’ references. We further
make eight insights into the implications of our study
results to guide future research in the development,
testing, and bug detection of Go.
• We proposed new methods to categorize concurrency
bugs along two dimensions of bug causes and behav-
iors. This taxonomy methodology helped us to better
compare different concurrency mechanisms and corre-
lations of bug causes and fixes. We believe other bug
studies can utilize similar taxonomy methods as well.

All our study results and studied commit logs can be found
at https://github.com/system-pclub/go-concurrency-bugs.

2 Background and Applications
Go is a statically-typed programming language that is de-
signed for concurrent programming from day one [60]. Al-
most all major Go revisions include improvements in its con-
currency packages [23]. This section gives a brief background
onGo’s concurrencymechanisms, including its threadmodel,
inter-thread communication methods, and thread synchro-
nization mechanisms. We also introduce the six Go applica-
tions we chose for this study.

2.1 Goroutine
Go uses a concept called goroutine as its concurrency unit.
Goroutines are lightweight user-level threads that the Go

runtime library manages and maps to kernel-level threads
in an M-to-N way. A goroutine can be created by simply
adding the keyword go before a function call.

To make goroutines easy to create, Go also supports creat-
ing a new goroutine using an anonymous function, a function
definition that has no identifier, or “name”. All local variables
declared before an anonymous function are accessible to the
anonymous function, and are potentially shared between
a parent goroutine and a child goroutine created using the
anonymous function, causing data race (Section 6).

2.2 Synchronization with Shared Memory
Go supports traditional shared memory accesses across
goroutines. It supports various traditional synchroniza-
tion primitives like lock/unlock (Mutex), read/write lock
(RWMutex), condition variable (Cond), and atomic read/write
(atomic). Go’s implementation of RWMutex is different from
pthread_rwlock_t in C. Write lock requests in Go have a
higher privilege than read lock requests.
As a new primitive introduced by Go, Once is designed

to guarantee a function is only executed once. It has a Do
method, with a function f as argument. When Once.Do(f)
is invoked many times, only for the first time, f is executed.
Once is widely used to ensure a shared variable only be
initialized once by multiple goroutines.
Similar to pthread_join in C, Go uses WaitGroup to al-

low multiple goroutines to finish their shared variable ac-
cesses before a waiting goroutine. Goroutines are added to
a WaitGroup by calling Add. Goroutines in a WaitGroup use
Done to notify their completion, and a goroutine calls Wait
to wait for the completion notification of all goroutines in
a WaitGroup. Misusing WaitGroup can cause both blocking
bugs (Section 5) and non-blocking bugs (Section 6).

2.3 Synchronization with Message Passing
Channel (chan) is a new concurrency primitive introduced
by Go to send data and states across goroutines and to build
more complex functionalities [3, 50]. Go supports two types
of channels: buffered and unbuffered. Sending data to (or
receiving data from) an unbuffered channel will block a gor-
outine, until another goroutine receives data from (or sends
data to) the channel. Sending to a buffered channel will only
block, when the buffer is full. There are several underlying
rules in using channels and the violation of them can create
concurrency bugs. For example, channel can only be used
after initialization, and sending data to (or receiving data
from) a nil channel will block a goroutine forever. Sending
data to a closed channel or close an already closed channel
can trigger a runtime panic.

The select statement allows a goroutine to wait on mul-
tiple channel operations. A select will block until one of its
cases can make progress or when it can execute a default
branch. When more than one cases in a select are valid, Go

will randomly choose one to execute. This randomness can
cause concurrency bugs as will be discussed in Section 6.
Go introduces several new semantics to ease the interac-

tion across multiple goroutines. For example, to assist the
programming model of serving a user request by spawn-
ing a set of goroutines that work together, Go introduces
context to carry request-specific data or metadata across
goroutines. As another example, Pipe is designed to stream
data between a Reader and a Writer. Both context and
Pipe are new forms of passing messages and misusing them
can create new types of concurrency bugs (Section 5).

Application Stars Commits Contributors LOC Dev History
Docker 48975 35149 1767 786K 4.2 Years
Kubernetes 36581 65684 1679 2297K 3.9 Years
etcd 18417 14101 436 441K 4.9 Years
CockroachDB 13461 29485 197 520k 4.2 Years
gRPC* 5594 2528 148 53K 3.3 Years
BoltDB 8530 816 98 9K 4.4 Years

Table 1. Information of selected applications. The num-
ber of stars, commits, contributors on GitHub, total source lines of
code, and development history on GitHub. *: the gRPC version that is
written in Go.

2.4 Go Applications
Recent years have seen a quick increase in popularity and
adoption of the Go language. Go was the 9th most popular
language on GitHub in 2017 [18]. As of the time of writing,
there are 187K GitHub repositories written in Go.
In this study, we selected six representative, real-world

software written in Go, including two container systems
(Docker and Kubernetes), one key-value store system (etcd),
two databases (CockroachDB and BoltDB), and one RPC
library (gRPC-go1) (Table 1). These applications are open-
source projects that have gained wide usages in datacenter
environments. For example, Docker and Kubernetes are the
top 2 most popular applications written in Go on GitHub,
with 48.9K and 36.5K stars (etcd is the 10th, and the rest are
ranked in top 100). Our selected applications all have at least
three years of development history and are actively main-
tained by developers currently. All our selected applications
are of middle to large sizes, with lines of code ranging from 9
thousand to more than 2 million. Among the six applications,
Kubernetes and gRPC are projects originally developed by
Google.

3 Go Concurrency Usage Patterns
Before studying Go concurrency bugs, it is important to first
understand how real-world Go concurrent programs are like.
This section presents our static and dynamic analysis results
of goroutine usages and Go concurrency primitive usages in
our selected six applications.

1We will use gRPC to represent the gRPC version that is written Go in the
following paper, unless otherwise specified.

Application Normal F. Anonymous F. Total Per KLOC
Docker 33 112 145 0.18
Kubernetes 301 233 534 0.23
etcd 86 211 297 0.67
CockroachDB 27 125 152 0.29
gRPC-Go 14 30 44 0.83
BoltDB 2 0 2 0.22
gRPC-C 5 - 5 0.03

Table 2. Number of goroutine/thread creation sites. The
number of goroutine/thread creation sites using normal functions and
anonymous functions, total number of creation sites, and creation
sites per thousand lines of code.

Workload Goroutines/Threads Ave. Execution Time
client server client-Go server-Go

g_sync_ping_pong 7.33 2.67 63.65% 76.97%
sync_ping_pong 7.33 4 63.23% 76.57%

qps_unconstrained 201.46 6.36 91.05% 92.73%

Table 3. Dynamic information when executing RPC
benchmarks. The ratio of goroutine number divided by thread
number and the average goroutine execution time normalized by the
whole application’s execution time.

3.1 Goroutine Usages
To understand concurrency in Go, we should first under-
stand how goroutines are used in real-world Go programs.
One of the design philoshopies in Go is to make goroutines
lightweight and easy to use. Thus, we ask “do real Go pro-
grammers tend to write their code with many goroutines
(static)?” and “do real Go applications create a lot of gorou-
tines during runtime (dynamic)?”
To answer the first question, we collected the amount

of goroutine creation sites (i.e., the source lines that create
goroutines). Table 2 summarizes the results. Overall, the
six applications use a large amount of goroutines. The av-
erage creation sites per thousand source lines range from
0.18 to 0.83. We further separate creation sites to those that
use normal functions to create goroutines and those that
use anonymous functions. All the applications except for
Kubernetes and BoltDB use more anonymous functions.

To understand the difference between Go and traditional
languages, we also analyzed another implementation of
gRPC, gRPC-C, which is implemented in C/C++. gRPC-C con-
tains 140K lines of code and is also maintained by Google’s
gRPC team. Compared to gRPC-Go, gRPC-C has surprisingly
very few threads creation (only five creation sites and 0.03
sites per KLOC).
We further study the runtime creation of goroutines. We

ran gRPC-Go and gRPC-C to process three performance
benchmarks that were designed to compare the performance
of multiple gRPC versions written in different program-
ming languages [22]. These benchmarks configure gRPC
with different message formats, different numbers of con-
nections, and synchronous vs. asynchronous RPC requests.
Since gRPC-C is faster than gRPC-Go [22], we ran gRPC-C
and gRPC-Go to process the same amount of RPC requests,
instead of the same amount of total time.

Application Shared Memory Message TotalMutex atomic Once WaitGroup Cond chan Misc.
Docker 62.62% 1.06% 4.75% 1.70% 0.99% 27.87% 0.99% 1410
Kubernetes 70.34% 1.21% 6.13% 2.68% 0.96% 18.48% 0.20% 3951
etcd 45.01% 0.63% 7.18% 3.95% 0.24% 42.99% 0 2075
CockroachDB 55.90% 0.49% 3.76% 8.57% 1.48% 28.23% 1.57% 3245
gRPC-Go 61.20% 1.15% 4.20% 7.00% 1.65% 23.03% 1.78% 786
BoltDB 70.21% 2.13% 0 0 0 23.40% 4.26% 47

Table 4. Concurrency Primitive Usage. The Mutex column
includes both Mutex and RWMutex.

Table 3 shows the ratio of the number of goroutines cre-
ated in gRPC-Go over the number of threads created in gRPC-
C when running the three workloads. More goroutines are
created across different workloads for both the client side
and the server side. Table 3 also presents our study results of
goroutine runtime durations and compare them to gRPC-C’s
thread runtime durations. Since gRPC-Go and gRPC-C’s total
execution time is different and it is meaningless to compare
absolute goroutine/thread duration, we report and compare
the goroutine/thread duration relative to the total runtime
of gRPC-Go and gRPC-C. Specifically, we calculate average
execution time of all goroutines/threads and normalize it
using the total execution time of the programs. We found all
threads in gRPC-C execute from the beginning to the end of
the whole program (i.e., 100%) and thus only included the
results of gRPC-Go in Table 3. For all workloads, the normal-
ized execution time of goroutines is shorter than threads.
Observation 1: Goroutines are shorter but created more fre-
quently than C (both statically and at runtime).

3.2 Concurrency Primitive Usages
After a basic understanding of goroutine usages in real-world
Go programs, we next study how goroutines communicate
and synchronize in these programs. Specifically, we calcu-
late the usages of different types of concurrency primitives
in the six applications. Table 4 presents the total (absolute
amount of primitive usages) and the proportion of each type
of primitive over the total primitives. Shared memory syn-
chronization operations are used more often than message
passing, and Mutex is the most widely-used primitive across
all applications. For message-passing primitives, chan is the
one used most frequently, ranging from 18.48% to 42.99%.

We further compare the usages of concurrency primitives
in gRPC-C and in gRPC-Go. gRPC-C only uses lock, and it is
used in 746 places (5.3 primitive usages per KLOC). gRPC-Go
uses eight different types of primitives in 786 places (14.8
primitive usages per KLOC). Clearly, gRPC-Go uses a larger
amount of and a larger variety of concurrency primitives
than gRPC-C.

Next, we study how the usages of concurrency primitives
change over time. Figures 2 and 3 present the shared-memory
and message-passing primitive usages in the six applications
from Feb 2015 to May 2018. Overall, the usages tend to be
stable over time, which also implies that our study results
will be valuable for future Go programmers.

.
1
5
−
0
2

1
5
−
0
5

1
5
−
0
8

1
5
−
1
1

1
6
−
0
2

1
6
−
0
5

1
6
−
0
8

1
6
−
1
1

1
7
−
0
2

1
7
−
0
5

1
7
−
0
8

1
7
−
1
1

1
8
−
0
2

1
8
−
0
5

U
s
a
g
e

P
r
o
p
o
r
t
i
o
n

0

0.2

0.4

0.6

0.8

1

docker kubernetes etcd

cockroachdb grpc−go boltdb

Figure 2. Usages of Shared-Memory
Primitives over Time. For each appli-
cation, we calculate the proportion of shared-
memory primitives over all primitives.

.
1
5
−
0
2

1
5
−
0
5

1
5
−
0
8

1
5
−
1
1

1
6
−
0
2

1
6
−
0
5

1
6
−
0
8

1
6
−
1
1

1
7
−
0
2

1
7
−
0
5

1
7
−
0
8

1
7
−
1
1

1
8
−
0
2

1
8
−
0
5

U
s
a
g
e

P
r
o
p
o
r
t
i
o
n

0

0.2

0.4

0.6

0.8

1

docker kubernetes etcd

cockroachdb grpc−go boltdb

Figure 3. Usages of Message-
Passing Primitives over Time. For
each application, we calculate the proportion
of message-passing primitives over all
primitives.

Bug Life Time (Days)

0 100 200 300 400 500 600 700P
e
r
c
e
n
t
a
g
e

o
f

S
t
u
d
i
e
d

B
u
g
s

0

0.2

0.4

0.6

0.8

1

shared memory

message passing

Figure 4. Bug Life Time. The CDF of
the life time of all shared-memory bugs and
all message-passing bugs.

Observation 2: Although traditional shared memory thread
communication and synchronization remains to be heavily
used, Go programmers also use significant amount of message-
passing primitives.
Implication 1: With heavier usages of goroutines and new
types of concurrency primitives, Go programs may potentially
introduce more concurrency bugs.

4 Bug Study Methodology
This section discusses how we collected, categorized, and
reproduced concurrency bugs in this study.
Collecting concurrency bugs. To collect concurrency
bugs, we first filtered GitHub commit histories of the six
applications by searching their commit logs for concurrency-
related keywords, including “race”, “deadlock”, “synchroniza-
tion”, “concurrency”, “lock”, “mutex”, “atomic”, “compete”,
“context”, “once”, and “goroutine leak”. Some of these key-
words are used in previous works to collect concurrency
bugs in other languages [40, 42, 45]. Some of them are re-
lated to new concurrency primitives or libraries introduced
by Go, such as “once” and “context”. One of them, “goroutine
leak”, is related to a special problem in Go. In total, we found
3211 distinct commits that match our search criteria.

Application Behavior Cause
blocking non-blocking shared memory message passing

Docker 21 23 28 16
Kubernetes 17 17 20 14
etcd 21 16 18 19
CockroachDB 12 16 23 5
gRPC 11 12 12 11
BoltDB 3 2 4 1
Total 85 86 105 66

Table 5. Taxonomy. This table shows how our studied bugs dis-
tribute across different categories and applications.

We then randomly sampled the filtered commits, identified
commits that fix concurrency bugs, and manually studied
them. Many bug-related commit logs also mention the cor-
responding bug reports, and we also study these reports for
our bug analysis. We studied 171 concurrency bugs in total.
Bug taxonomy. We propose a newmethod to categorize Go
concurrency bugs according to two orthogonal dimensions.

The first dimension is based on the behavior of bugs. If one or
more goroutines are unintentionally stuck in their execution
and cannot move forward, we call such concurrency issues
blocking bugs. If instead all goroutines can finish their tasks
but their behaviors are not desired, we call them non-blocking
ones. Most previous concurrency bug studies [24, 43, 45]
categorize bugs into deadlock bugs and non-deadlock bugs,
where deadlocks include situations where there is a circular
wait across multiple threads. Our definition of blocking is
broader than deadlocks and include situations where there
is no circular wait but one (or more) goroutines wait for
resources that no other goroutines supply. As we will show
in Section 5, quite a few Go concurrency bugs are of this
kind. We believe that with new programming habits and
semantics with new languages like Go, we should pay more
attention to these non-deadlock blocking bugs and extend
the traditional concurrency bug categorization mechanism.
The second dimension is along the cause of concurrency

bugs. Concurrency bugs happenwhenmultiple threads try to
communicate and errors happen during such communication.
Our idea is thus to categorize causes of concurrency bugs by
how different goroutines communicate: by accessing shared
memory or by passing messages. This categorization can
help programmers and researchers choose better ways to
perform inter-thread communication and to detect and avoid
potential errors when performing such communication.

According to our categorization method, there are a total
of 85 blocking bugs and 86 non-blocking bugs, and there
are a total of 105 bugs caused by wrong shared memory
protection and 66 bugs caused by wrong message passing.
Table 5 shows the detailed breakdown of bug categories
across each application.

We further analyzed the life time of our studied bugs, i.e.,
the time from when the buggy code was added (committed)
to the software towhen it is being fixed in the software (a bug-
fixing patch is committed). As shown in Figure 4, most bugs
we study (both shared memory and message passing) have
long life time. We also found the time when these bugs were
report to be close to when they were fixed. These results
show that most of the bugs we study are not easy to be

Application Shared Memory Message Passing
Mutex RWMutex Wait Chan Chan w/ Lib

Docker 9 0 3 5 2 2
Kubernetes 6 2 0 3 6 0
etcd 5 0 0 10 5 1
CockroachDB 4 3 0 5 0 0
gRPC 2 0 0 6 2 1
BoltDB 2 0 0 0 1 0
Total 28 5 3 29 16 4

Table 6. Blocking Bug Causes. Wait includes both the Wait
function in Cond and in WaitGroup. Chan indicates channel opera-
tions and Chan w/ means channel operations with other operations.
Lib stands for Go libraries related to message passing.

triggered or detected, but once they are, they got fixed very
soon. Thus, we believe these bugs are non-trivial and worth
close examination.
Reproducing concurrency bugs. In order to evaluate the
built-in deadlock and data-race detection techniques, we
reproduced 21 blocking bugs and 20 non-blocking bugs. To
reproduce a bug, we rolled the application back to the buggy
version, built the buggy version, and ran the built program
using the bug-triggering input described in the bug report.
We leveraged the symptom mentioned in the bug report
to decide whether we have successfully reproduced a bug.
Due to their non-deterministic nature, concurrency bugs
are difficult to reproduce. Sometimes, we needed to run a
buggy program a lot of times or manually add sleep to a
buggy program. For a bug that is not reproduced, it is either
because we do not find some dependent libraries, or because
we fail to observe the described symptom.
Threats to validity. Threats to the validity of our study
could come from many aspects. We selected six represen-
tative Go applications. There are many other applications
implemented in Go and they may not share the same con-
currency problems. We only studied concurrency bugs that
have been fixed. There could be other concurrency bugs
that are rarely reproduced and are never fixed by developers.
For some fixed concurrency bugs, there is too little infor-
mation provided, making them hard to understand. We do
not include these bugs in our study. Despite these limita-
tions, we have made our best efforts in collecting real-world
Go concurrency bugs and in conducting a comprehensive
and unbiased study. We believe that our findings are general
enough to motivate and guide future research on fighting
Go concurrency bugs.

5 Blocking Bugs
This section presents our study results on blocking bugs,
including their root causes, fixes, and the effectiveness of the
built-in runtime Go deadlock detector on detecting blocking
situations.

5.1 Root Causes of Blocking Bugs
Blocking bugs manifest when one or more goroutines con-
duct operations that wait for resources, and these resources

are never available. To detect and avoid blocking bugs, it is
important to understand their root causes. We study block-
ing bugs’ root causes by examining which operation blocks
a goroutine and why the operation is not unblocked by other
goroutines. Using our second dimension of bug categoriza-
tion, we separate blocking bugs into those that are caused by
stuck operations that are intended to protect shared mem-
ory accesses and those that are caused by message passing
operations. Table 6 summarizes the root causes of all the
blocking bugs.

Overall, we found that there are around 42% blocking bugs
caused by errors in protecting shared memory, and 58% are
caused by errors in message passing. Considering that shared
memory primitives are used more frequently than message
passing ones (Section 3.2), message passing operations are
even more likely to cause blocking bugs.
Observation 3: Contrary to the common belief that message
passing is less error-prone, more blocking bugs in our studied
Go applications are caused by wrong message passing than by
wrong shared memory protection.

5.1.1 (mis)Protection of Shared Memory
Shared memory accesses are notoriously hard to program
correctly and have always been one of the major focuses
on deadlock research [35, 51, 54]. They continue to cause
blocking bugs in Go, both with traditional patterns and new,
Go-specific reasons.
Mutex 28 blocking bugs are caused by misusing locks
(Mutex), including double locking, acquiring locks in conflict-
ing orders, and forgetting to unlock. All bugs in this category
are traditional bugs, and we believe traditional deadlock de-
tection algorithms should be able to detect these bugs with
static program analysis.
RWMutex As explained in Section 2.2, Go’s write lock re-
quests have a higher privilege than read lock requests. This
unique lock implementation can lead to a blocking bug when
a goroutine (th-A) acquires one RWMutex twice with read
locking, and these two read lock operations are interleaved
by a write lock operation from another goroutine (th-B).
When th-A’s first read lock operation succeeds, it will block
th-B’s write lock operation, since write locking is exclusive.
However, th-B’s write lock operation will also block th-A’s
second read lock operation, since the write lock request has
a higher privilege in Go’s implementation. Neither th-A nor
th-B will be able to proceed.

Five blocking bugs are caused by this reason. Note that the
same interleaving locking pattern will not cause blocking
bugs for pthread_rwlock_t in C, since pthread_rwlock_t
prioritize read lock requests under the default setting. The
RWMutex blocking bug type implies that even when Go uses
the same concurrency semantics as traditional languages,
there can still be new types of bugs because of Go’s new
implementation of the semantics.

1 var group sync.WaitGroup

2 group.Add(len(pm.plugins))
3 for _, p := range pm.plugins {

4 go func(p *plugin) {

5 defer group.Done()

6 }

7 - group.Wait()

8 }

9 + group.Wait()

Figure 5. A blocking bug caused by WaitGroup.

Wait Three blocking bugs are due to wait operations that
cannot proceed. Unlike Mutex and RWMutex related bugs,
they do not involve circular wait. Two of these bugs happen
when Cond is used to protect shared memory accesses and
one goroutine calls Cond.Wait(), but no other goroutines
call Cond.Signal() (or Cond.Broadcast()) after that.
The third bug, Docker#25384, happens with the use of

a shared variable of type WaitGroup, as shown in Fig-
ure 5. The Wait() at line 7 can only be unblocked, when
Done() at line 5 is invoked len(pm.plugins) times, since
len(pm.plugins) is used as parameter to call Add() at line
2. However, the Wait() is called inside the loop, so that it
blocks goroutine creation at line 4 in later iterations and it
blocks the invocation of Done() inside each created gorou-
tine. The fix of this bug is to move the invocation of Wait()
out from the loop.

Although conditional variable and thread group wait are
both traditional concurrency techniques, we suspect Go’s
new programming model to be one of the reasons why pro-
grammers made these concurrency bugs. For example, un-
like pthread_join which is a function call that explicitly
waits on the completion of (named) threads, WaitGroup is a
variable that can be shared across goroutines and its Wait
function implicitly waits for the Done function.
Observation 4:Most blocking bugs that are caused by shared
memory synchronization have the same causes and same fixes
as traditional languages. However, a few of them are different
from traditional languages either because of Go’s new im-
plementation of existing primitives or its new programming
semantics.

5.1.2 Misuse of Message Passing
We now discuss blocking bugs caused by errors in message
passing, which in the contrary of common belief are the
main type of blocking bugs in our studied applications.
Channel Mistakes in using channel to pass messages across
goroutines cause 29 blocking bugs. Many of the channel-
related blocking bugs are caused by the missing of a send to
(or receive from) a channel or closing a channel, which will
result in the blocking of a goroutine that waits to receive
from (or send to) the channel. One such example is Figure 1.
When combining with the usage of Go special libraries,

the channel creation and goroutine blocking may be buried
inside library calls. As shown in Figure 6, a new context

1 - hctx, hcancel := context.WithCancel(ctx)

2 + var hctx context.Context

3 + var hcancel context.CancelFunc

4 if timeout > 0 {

5 hctx, hcancel = context.WithTimeout(ctx, timeout)

6 + } else {

7 + hctx, hcancel = context.WithCancel(ctx)

8 }

Figure 6. A blocking bug caused by context.

object, hcancel, is created at line 1. A new goroutine is
created at the same time, andmessages can be sent to the new
goroutine through the channel field of hcancel. If timeout
is larger than 0 at line 4, another context object is created at
line 5, and hcancel is pointing to the new object. After that,
there is no way to send messages to or close the goroutine
attached to the old object. The patch is to avoid creating the
extra context object when timeout is larger than 0.

1 func goroutine1() {

2 m.Lock()

3 - ch <- request //blocks

4 + select {

5 + case ch <- request

6 + default:
7 + }

8 m.Unlock()

9 }

1 func goroutine2() {

2 for {

3 m.Lock() //blocks

4 m.Unlock()

5 request <- ch

6 }

7 }

(a) goroutine 1 (b) goroutine 2

Figure 7. A blocking bug caused by wrong usage of
channel with lock.

Channel and other blocking primitives For 16 blocking bugs,
one goroutine is blocked at a channel operation, and another
goroutine is blocked at lock or wait. For example, as shown
in Figure 7, goroutine1 is blocked at sending request to
channel ch, while goroutine2 is blocked at m.Lock(). The
fix is to add a select with default branch for goroutine1
to make ch not blocking any more.
Messaging libraries Go provides several libraries to pass data
or messages, like Pipe. These special library calls can also
cause blocking bugs when not used correctly. For example,
similar to channel, if a Pipe is not closed, a goroutine can be
blocked when it tries to send data to or pull data from the
unclosed Pipe. There are 4 collected blocking bugs caused
by special Go message-passing library calls.
Observation 5: All blocking bugs caused by message passing
are related to Go’s new message passing semantics like channel.
They can be difficult to detect especially when message pass-
ing operations are used together with other synchronization
mechanisms.
Implication 2: Contrary to common belief, message passing
can cause more blocking bugs than shared memory. We call for
attention to the potential danger in programming with message
passing and raise the research question of bug detection in this
area.

Adds Moves Changes Removes Misc.
Shared Memory
Mutex 9 7 2 8 2
Wait 0 1 0 1 1
RWMutex 0 2 0 3 0

Message Passing
Chan 15 1 5 4 4
Chan w/ 6 3 2 4 1
Messaging Lib 1 0 0 1 2

Total 31 14 9 21 10

Table 7. Fix strategies for blocking bugs. The subscript s
stands for synchronization.

5.2 Fixes of Blocking Bugs
After understanding the causes of blocking bugs in Go, we
now analyze how Go programmers fixed these bugs in the
real world.
Eliminating the blocking cause of a hanging goroutine

will unblock it and this is the general approach to fix block-
ing bugs. To achieve this goal, Go developers often adjust
synchronization operations, including adding missing ones,
moving or changing misplaced/misused ones, and removing
extra ones. Table 7 summarizes these fixes.
Most blocking bugs caused by mistakenly protecting

shared memory accesses were fixed by methods similar to
traditional deadlock fixes. For example, among the 33 Mutex-
or RWMutex-related bugs, 8 were fixed by adding a missing
unlock; 9 were fixed by moving lock or unlock operations
to proper locations; and 11 were fixed by removing an extra
lock operation.

11 blocking bugs caused by wrong message passing were
fixed by adding a missing message or closing operation to
a channel (and on two occasions, to a pipe) on a goroutine
different from the blocking one. 8 blocking bugs were fixed
by adding a select with a default option (e.g., Figure 7)
or a case with operation on a different channel. Another
common fix of channel-related blocking bugs is to replace an
unbuffered channel with a buffered channel (e.g., Figure 1).
Other channel-related blocking bugs can be fixed by strate-
gies such as moving a channel operation out of a critical
section and replacing channel with shared variables.
To understand the relationship between the cause of

a blocking bug and its fix, we apply a statistical metric
called lift, following previous empirical studies on real-world
bugs [29, 41]. lift is calculated as lift(A,B) = P (AB)

P (A)P (B) , where
A denotes a root cause category, B denotes a fix strategy cate-
gory, P (AB) denotes the probability that a blocking is caused
by A and fixed by B. When lift value is equal to 1, A root
cause is independent with B fix strategy. When lift value is
larger than 1,A and B are positively correlated, which means
if a blocking is caused by A, it is more likely to be fixed by B.
When lift is smaller than 1,A and B are negatively correlated.

Among all the bug categories that have more than 10
blocking bugs (we omit categories that have less than 10
bugs because of their statistical insignificance), Mutex is the
category that has the strongest correlation to a type of fix—it
correlates with Moves with lift value 1.52. The correlation

Root Cause # of Used Bugs # of Detected Bugs
Mutex 7 1
Chan 8 0
Chan w/ 4 1
Messaging Libraries 2 0
Total 21 2

Table 8. Benchmarks and evaluation results of the
deadlock detector.

between Chan and Adds is the second highest, with lift value
1.42. All other categories that have more than 10 blocking
bugs have lift values below 1.16, showing no strong correla-
tion.
We also analyzed the fixes of blocking bugs according to

the type of concurrency primitives used in the patches. As
expected, most bugs whose causes are related to a certain
type of primitive were also fixed by adjusting that primitive.
For example, all Mutex-related bugs were fixed by adjusting
Mutex primitives.

The high correlation of bug causes and the primitives and
strategies used to fix them, plus the limited types of syn-
chronization primitives in Go, suggests fruitful revenue in
investigating automatic correction of blocking bugs in Go.
We further find that the patch size of our studied blocking
bugs is small, with an average of 6.8 lines of code. Around
90% of studied blocking bugs are fixed by adjusting synchro-
nization primitives.
Observation 6: Most blocking bugs in our study (both tradi-
tional shared-memory ones and message passing ones) can be
fixed with simple solutions and many fixes are correlated with
bug causes.
Implication 3: High correlation between causes and fixes in
Go blocking bugs and the simplicity in their fixes suggest that
it is promising to develop fully automated or semi-automated
tools to fix blocking bugs in Go.

5.3 Detection of Blocking Bugs
Go provides a built-in deadlock detector that is implemented
in the goroutine scheduler. The detector is always enabled
during Go runtime and it reports deadlock when no gorou-
tines in a running process can make progress. We tested all
our reproduced blocking bugs with Go’s built-in deadlock
detector to evaluate what bugs it can find. For every tested
bug, the blocking can be triggered deterministically in ev-
ery run. Therefore, for each bug, we only ran it once in this
experiment. Table 8 summarizes our test results.

The built-in deadlock detector can only detect two block-
ing bugs, BoltDB#392 and BoltDB#240, and fail in all other
cases (although the detector does not report any false posi-
tives [38, 39]). There are two reasons why the built-in detec-
tor failed to detect other blocking bugs. First, it does not con-
sider the monitored system as blocking when there are still
some running goroutines. Second, it only examines whether
or not goroutines are blocked at Go concurrency primitives
but does not consider goroutines that wait for other systems

Application Shared Memory Message Passing
traditional anon. waitgroup lib chan lib

Docker 9 6 0 1 6 1
Kubernetes 8 3 1 0 5 0
etcd 9 0 2 2 3 0
CockroachDB 10 1 3 2 0 0
gRPC 8 1 0 1 2 0
BoltDB 2 0 0 0 0 0
Total 46 11 6 6 16 1

Table 9. Root causes of non-blocking bugs. traditional:
traditional non-blocking bugs; anonymous function: non-blocking
bugs caused by anonymous function; waitgroup: misusingWaitGroup;
lib: Go library; chan: misusing channel.

resources. These two limitations were largely due to the de-
sign goal of the built-in detector—minimal runtime overhead.
When implemented in the runtime scheduler, it is very hard
for a detector to effectively identify complex blocking bugs
without sacrificing performance.
Implication 4: Simple runtime deadlock detector is not ef-
fective in detecting Go blocking bugs. Future research should
focus on building novel blocking bug detection techniques, for
example, with a combination of static and dynamic blocking
pattern detection.

6 Non-Blocking Bugs
This section presents our study on non-blocking bugs. Simi-
lar to what we did in Section 5, we studied the root causes
and fixes of non-blocking bugs and evaluated a built-in race
detector of Go.

6.1 Root Causes of Non-blocking Bugs
Similar to blocking bugs, we also categorize our collected
non-blocking bugs into those that were caused by failing
to protect shared memory and those that have errors with
message passing (Table 9).

6.1.1 Failing to Protect Shared Memory
Previous work [8, 14, 16, 17, 46, 47, 52, 62–64] found that not
protecting shared memory accesses or errors in such protec-
tion are the main causes of data race and other non-deadlock
bugs. Similarly, we found around 80% of our collected non-
blocking bugs are due to un-protected or wrongly protected
shared memory accesses. However, not all of them share the
same causes as non-blocking bugs in traditional languages.
Traditional bugs More than half of our collected non-
blocking bugs are caused by traditional problems that also
happen in classic languages like C and Java, such as atomic-
ity violation [8, 16, 46], order violation [17, 47, 62, 64], and
data race [14, 52, 63]. This result shows that same mistakes
are made by developers across different languages. It also
indicates that it is promising to apply existing concurrency
bug detection algorithms to look for new bugs in Go.
Interestingly, we found seven non-blocking bugs whose

root causes are traditional but are largely caused by the lack
of a clear understanding in new Go features. For example,

1 for i := 17; i <= 21; i++ { // write

2 - go func() { /* Create a new goroutine */

3 + go func(i int) {

4 apiVersion := fmt.Sprintf("v1.%d", i) // read

5 ...

6 - }()

7 + }(i)

8 }

Figure 8. A data race caused by anonymous function.
1 func (p *peer) send() {

2 p.mu.Lock()

3 defer p.mu.Unlock()

4 switch p.status {

5 case idle:

6 + p.wg.Add(1)

7 go func() {

8 - p.wg.Add(1)

9 ...

10 p.wg.Done()

11 }()

12 case stopped:

13 }

14 }

1 func (p * peer) stop() {

2 p.mu.Lock()

3 p.status = stopped

4 p.mu.Unlock()

5 p.wg.Wait()

6 }

(a) func1 (b) func2

Figure 9. A non-blocking bug caused by misusing
WaitGroup.
Docker#22985 and CockroachDB#6111 are caused by data
race on a shared variable whose reference is passed across
goroutines through a channel.
Anonymous function Go designers make goroutine declara-
tion similar to a regular function call (which does not even
need to have a “function name”) so as to ease the creation of
goroutines. All local variables declared before a Go anony-
mous function are accessible by the anonymous function.
Unfortunately, this ease of programming can increase the
chance of data-race bugs when goroutines are created with
anonymous functions, since developers may not pay enough
attention to protect such shared local variables.

We found 11 bugs of this type, 9 of which are caused by a
data race between a parent goroutine and a child goroutine
created using an anonymous function. The other two are
caused by a data race between two child goroutines. One
example from Docker is shown in Figure 8. Local variable i
is shared between the parent goroutine and the goroutines it
creates at line 2. The developer intends each child goroutine
uses a distinct i value to initialize string apiVersion at line 4.
However, values of apiVersion are non-deterministic in the
buggy program. For example, if the child goroutines begin
after the whole loop of the parent goroutine finishes, value of
apiVersion are all equal to ‘v1.21’. The buggy program only
produces desired result when each child goroutine initializes
string apiVersion immediately after its creation and before
i is assigned to a new value. Docker developers fixed this bug
by making a copy of the shared variable i at every iteration
and pass the copied value to the new goroutines.
Misusing WaitGroup There is an underlying rule when using
WaitGroup, which is that Add has to be invoked before Wait.
The violation of this rule causes 6 non-blocking bugs. Figure 9

shows one such bug in etcd, where there is no guarantee
that Add at line 8 of func1 happens before Wait at line 5 of
func2. The fix is to move Add into a critical section, which
ensures that Add will either be executed before Wait or it
will not be executed.
Special libraries Go provides many new libraries, some of
which use objects that are implicitly shared by multiple gor-
outines. If they are not used correctly, data race may hap-
pen. For example, the context object type is designed to
be accessed by multiple goroutines that are attached to the
context. etcd#7816 is a data-race bug caused by multiple
goroutines accessing the string field of a context object.
Another example is the testing package which is de-

signed to support automated testing. A testing function (iden-
tified by beginning the function name with “Test”) takes only
one parameter of type testing.T, which is used to pass test-
ing states such as error and log. Three data-race bugs are
caused by accesses to a testing.T variable from the gor-
outine running the testing function and other goroutines
created inside the testing function.
Observation 7: About two-thirds of shared-memory non-
blocking bugs are caused by traditional causes. Go’s new multi-
thread semantics and new libraries contribute to the rest one-
third.
Implication 5: New programming models and new libraries
that Go introduced to ease multi-thread programming can
themselves be the reasons of more concurrency bugs.

6.1.2 Errors during Message Passing
Errors during message passing can also cause non-blocking
bugs and they comprise around 20% of our collected non-
blocking bugs.
Misusing channel As what we discussed in Section 2, there
are several rules when using channel, and violating them
can lead to non-blocking bugs in addition to blocking ones.
There are 16 non-blocking bugs caused by misuse of channel.
1 - select {

2 - case <- c.closed:

3 - default:
4 + Once.Do(func() {

5 close(c.closed)
6 + })

7 - }

Figure 10. A bug caused by closing a channel twice.

As an example, Docker#24007 in Figure 10 is caused by the
violation of the rule that a channel can only be closed once.
When multiple goroutines execute the piece of code, more
than one of them can execute the default clause and try to
close the channel at line 5, causing a runtime panic in Go.
The fix is to use Once package to enforce that the channel is
only closed once.
Another type of concurrency bugs happen when using

channel and select together. In Go, whenmultiple messages
received by a select, there is no guarantee which one will

1 ticker := time.NewTicker()

2 for {

3 + select {

4 + case <- stopCh:

5 + return
6 + default:
7 + }

8 f()

9 select {

10 case <- stopCh:

11 return
12 case <- ticker:

13 }

14 }

Figure 11. A non-blocking bug caused by select and
channel.

1 - timer := time.NewTimer(0)

2 + var timeout <- chan time.Time

3 if dur > 0 {

4 - timer = time.NewTimer(dur)

5 + timeout = time.NewTimer(dur).C

6 }

7 select {

8 - case <- timer.C:

9 + case <- timeout:

10 case <-ctx.Done():

11 return nil
12 }

Figure 12. A non-blocking bug caused by Timer.

be processed first. This non-determinism implementation of
select caused 3 bugs. Figure 11 shows one such example.
The loop at line 2 executes a heavy function f() at line
8 whenever a ticker ticks at line 12 (case 2) and stops its
execution when receiving a message from channel stopCh
at line 10 (case 1). If receiving a message from stopCh and
the ticker ticks at the same time, there is no guarantee which
one will be chosen by select. If select chooses case 2, f()
will be executed unnecessarily one more time. The fix is to
add another select at the beginning of the loop to handle
the unprocessed signal from stopCh.
Special libraries Some of Go’s special libraries use channels
in a subtle way, which can also cause non-blocking bugs.
Figure 12 shows one such bug related to the time package
which is designed for measuring time. Here, a timer is cre-
ated with timeout duration 0 at line 1. At the creation time
of a Timer object, Go runtime (implicitly) starts a library-
internal goroutine which starts timer countdown. The timer
is set with a timeout value dur at line 4. Developers here
intended to return from the current function only when dur
is larger than 0 or when ctx.Done(). However, when dur is
not greater than 0, the library-internal goroutine will signal
the timer.C channel as soon as the creation of the timer,
causing the function to return prematurely (line 8). The fix
is to avoid the Timer creation at line 1.
Observation 8: There are much fewer non-blocking bugs
caused by message passing than by shared memory accesses.
Rules of channel and complexity of using channel with other

Timing Instruction
Bypass

Data
Private Misc.Adds Moves

Shared Memory
traditional 27 4 5 10 0
waitgroup 3 2 1 0 0
anonymous 5 2 0 4 0
lib 1 2 1 0 2

Message Passing
chan 6 7 3 0 0
lib 0 0 0 0 1

Total 42 17 10 14 3

Table 10. Fix strategies for non-blocking bugs. The sub-
script s stands for synchronization.

Mutex Channel Atomic WaitGroup Cond Misc. None
Shared Memory
traditional 24 3 6 0 0 0 13
waitgroup 2 0 0 4 3 0 0
anonymous 3 2 3 0 0 0 3
lib 0 2 1 1 0 1 2

Message Passing
chan 3 11 0 2 1 2 1
lib 0 1 0 0 0 0 0

Total 32 19 10 7 4 3 19

Table 11. Synchronization primitives in patches of
non-blocking bugs.
Go-specific semantics and libraries are the reasons why these
non-blocking bugs happen.
Implication 6: When used correctly, message passing can
be less prone to non-blocking bugs than shared memory ac-
cesses. However, the intricate design of message passing in a
language can cause these bugs to be especially hard to find
when combining with other language-specific features.

6.2 Fixes of Non-Blocking Bugs
Similar to our analysis of blocking bug fixes, we first ana-
lyze fixes of non-blocking bugs by their strategies. Table 10
categorizes the fix strategies of our studied Go non-blocking
bugs, in a similar way as a previous categorization of non-
blocking bug fixes in C/C++ [43].
Around 69% of the non-blocking bugs were fixed by re-

stricting timing, either through adding synchronization prim-
itives like Mutex, or through moving existing primitives like
moving Add in Figure 9. 10 non-blocking bugs were fixed
by eliminating instructions accessing shared variables or by
bypassing the instructions (e.g., Figure 10). 14 bugs were
fixed by making a private copy of the shared variable (e.g.,
Figure 8) and these bugs are all shared-memory ones.

To have a better understanding of non-blocking bug fixes
and their relationship to bug causes, we further check what
primitives are leveraged inside patches. Table 11 lists the
fixes according to the type of primitives used in the patches.

Similar to the results of a previous study on patches of con-
currency bugs in C/C++ [43], mutex is the most widely used
primitive to enforce mutual exclusion and fix non-blocking
bugs. Besides traditional bugs, mutex was also used to fix
races caused by anonymous function and by WaitGroup and
to replace misused channel.
As a new primitive, channel is the second most widely-

used. Channel was leveraged to pass value between two

Root Cause # of Used Bugs # of Detected Bugs
Traditional Bugs 13 7
Anonymous Function 4 3
Lib 2 0
Misusing Channel 1 0
Total 20 10

Table 12. Benchmarks and evaluation results of the
data race detector. We consider a bug detected within 100 runs
as a detected bug.

goroutines and to replace shared variable to fix data race. It
was also used to enforce the order between two operations
in different goroutines. There are also bugs where channel is
not properly used and is fixed in the patch (e.g., Figure 10).

Interestingly, channels were not only used to fix message-
passing bugs but also bugs caused by traditional shared mem-
ory synchronization. We suspect this is because some Go
programmers view message passing as a more reliable way
or easier-to-program way of performing inter-thread com-
munication than shared memory synchronization.
Finally, 24 bugs were fixed by other concurrency primi-

tives and 19 bugs were fixed without using any concurrency
primitives (e.g., Figure 8).

Similar to our lift analysis in Section 5.2, we calculate lift
between causes and fix strategies and between causes and
fix primitives for non-blocking bugs. Among bug categories
with more than 10 bugs, the strongest correlation is between
the cause misusing channel and fix primitive channel, with a
lift value of 2.7. The cause anonymous function and the fix
strategy data private has the second highest lift value of 2.23.
Next, Misusing channel is strongly correlated with Moves
with lift value 2.21.
Observation 9: Traditional shared memory synchronization
techniques remain to be the main fixes for non-blocking bugs in
Go, while channel is used widely to fix not only channel-related
bugs but also shared-memory bugs.
Implication 7: While Go programmers continue to use tra-
ditional shared memory protection mechanisms to fix non-
blocking bugs, they prefer the use of message passing as a fix
in certain cases possibly because they view message passing as
a safer way to communicate across threads.

6.3 Detection of Non-Blocking Bugs
Go provides a data race detector which uses the same happen-
before algorithm as ThreadSanitizer [53]. It can be enabled
by building a program using the ‘-race’ flag. During program
execution, the race detector creates up to four shadow words
for every memory object to store historical accesses of the
object. It compares every new access with the stored shadow
word values to detect possible races.

We use our 20 reproduced non-blocking bugs to evaluate
how many bugs the detector can detect. We ran each buggy
program 100 times with the race detector turned on. Table 12
summarizes the number of bugs detected under each root
cause category. The detector reports no false positives.

The data race detector successfully detected 7/13 tradi-
tional bugs and 3/4 bugs caused by anonymous functions.
For six of these successes, the data race detector reported
bugs on every run, while for the rest four, around 100 runs
were needed before the detector reported a bug.

There are three possible reasons why the data race detec-
tor failed to report many non-blocking bugs. First, not all
non-blocking bugs are data races; the race detector was not
designed to detect these other types. Second, the effective-
ness of the underlying happen-before algorithm depends on
the interleaving of concurrent goroutines. Finally, with only
four shadow words for each memory object, the detector
cannot keep a long history and may miss data races.
Implication 8: Simple traditional data race detector cannot
effectively detect all types of Go non-blocking bugs. Future
research can leverage our bug analysis to develop more infor-
mative, Go-specific non-blocking bug detectors.

7 Discussion and Future Work
Go advocates for making thread creation easy and light-
weight and for using message passing over shared memory
for inter-thread communication. Indeed, we saw more gor-
outines created in Go programs than traditional threads and
there are significant usages of Go channel and other mes-
sage passing mechanisms. However, our study show that
if not used correctly, these two programming practices can
potentially cause concurrency bugs.
Shared memory vs. message passing. Our study found
that message passing does not necessarily make multi-
threaded programs less error-prone than shared memory.
In fact, message passing is the main cause of blocking bugs.
To make it worse, when combined with traditional synchro-
nization primitives or with other new language features
and libraries, message passing can cause blocking bugs that
are very hard to detect. Message passing causes less non-
blocking bugs than shared memory synchronization and sur-
prisingly, was even used to fix bugs that are caused by wrong
shared memory synchronization. We believe that message
passing offers a clean form of inter-thread communication
and can be useful in passing data and signals. But they are
only useful if used correctly, which requires programmers
to not only understand message passing mechanisms well
but also other synchronization mechanisms of Go.
Implication on bug detection. Our study reveals many
buggy code patterns that can be leveraged to conduct con-
currency bug detection. As a preliminary effort, we built a
detector targeting the non-blocking bugs caused by anony-
mous functions (e.g. Figure 8). Our detector has already dis-
covered a few new bugs, one of which has been confirmed
by real application developers [12].
More generally, we believe that static analysis plus pre-

vious deadlock detection algorithms will still be useful in
detecting most Go blocking bugs caused by errors in shared
memory synchornization. Static technologies can also help

in detecting bugs that are caused by the combination of
channel and locks, such as the one in Figure 7.
Misusing Go libraries can cause both blocking and non-

blocking bugs. We summarized several patterns about mis-
using Go libraries in our study. Detectors can leverage the
patterns we learned to reveal previously unknown bugs.
Our study also found the violation of rules Go enforces

with its concurrency primitives is one major reason for con-
currency bugs. A novel dynamic technique can try to enforce
such rules and detect violation at runtime.

8 Related Works
Studying Real-World Bugs. There are many empirical
studies on real-world bugs [9, 24, 25, 29, 40, 44, 45]. These
studies have successfully guided the design of various bug-
combating techniques. To the best of our knowledge, our
work is the first study focusing on concurrency bugs in Go
and the first to compare bugs caused by errors when access-
ing shared memory and errors when passing messages.
Combating Blocking Bugs.As a traditional problem, there
are many research works fighting deadlocks in C and
Java [7, 28, 33–35, 51, 54, 55, 58, 59]. Although useful, our
study shows that there are many non-deadlock blocking
bugs in Go, which are not the goal of these techniques. Some
techniques are proposed to detect blocking bugs caused by
misusing channel [38, 39, 49, 56]. However, blocking bugs
can be caused by other primitives. Our study reveals many
code patterns for blocking bugs that can serve the basis for
future blocking bug detection techniques.
Combating Non-Blocking Bugs.Many previous research
works are conducted to detect, diagnose and fix non-deadlock
bugs, caused by failing to synchronize shared memory ac-
cesses [4, 5, 8, 14, 16, 17, 30–32, 43, 46, 47, 52, 62–64]. They
are promising to be applied to Go concurrency bugs. How-
ever, our study finds that there is a non-negligible portion of
non-blocking bugs caused by errors during message passing,
and these bugs are not covered by previous works. Our study
emphasizes the need of new techniques to fight errors during
message passing.

9 Conclusion
As a programming language designed for concurrency, Go
provides lightweight goroutines and channel-based message
passing between goroutines. Facing the increasing usage of
Go in various types of applications, this paper conducts the
first comprehensive, empirical study on 171 real-world Go
concurrency bugs from two orthogonal dimensions. Many
interesting findings and implications are provided in our
study. We expect our study to deepen the understanding
of Go concurrency bugs and bring more attention to Go
concurrency bugs.

References
[1] Principles of designing Go APIs with channels. URL:

https://inconshreveable.com/07-08-2014/principles-of-designing-go-
apis-with-channels/.

[2] The Go Blog: Share Memory By Communicating. URL:
https://blog.golang.org/share-memory-by-communicating.

[3] Sameer Ajmani. Advanced Go Concurrency Patterns. URL:
https://talks.golang.org/2013/advconc.slide.

[4] Joy Arulraj, Po-Chun Chang, Guoliang Jin, and Shan Lu. Production-
run software failure diagnosis via hardware performance counters.
In Proceedings of the 18th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
’13), Houston, Texas, USA, March 2013.

[5] Joy Arulraj, Guoliang Jin, and Shan Lu. Leveraging the short-term
memory of hardware to diagnose production-run software failures.
In Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
’14), Salt Lake City, Utah, USA, March 2014.

[6] boltdb. An embedded key/value database for Go. URL:
https://github.com/boltdb/bolt.

[7] Yan Cai and W. K. Chan. Magiclock: Scalable detection of potential
deadlocks in large-scale multithreaded programs. IEEE Transactions
on Software Engineering, 40(3):266-281, 2014.

[8] Lee Chew and David Lie. Kivati: Fast detection and prevention of
atomicity violations. In Proceedings of the 5th European Conference on
Computer systems (EuroSys ’10), Paris, France, April 2010.

[9] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson
Engler. An empirical study of operating systems errors. In Proceedings
of the 18th ACM symposium on Operating Systems Principles (SOSP ’01),
Banff, Alberta, Canada, October 2001.

[10] Cockroach. CockroachDB is a cloud-native SQL database for build-
ing global, scalable cloud services that survive disasters. URL:
https://github.com/cockroachdb/cockroach.

[11] Russ Cox. Bell Labs and CSP Threads. URL:
http://swtch.com/ rsc/thread/.

[12] Graphql Developers. A thread-safe way of appending errors into
Result.Errors. URL: https://github.com/graphql-go/graphql/pull/434.

[13] Docker. Docker - Build, Ship, and Run Any App, Anywhere. URL:
https://www.docker.com/.

[14] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk
Olynyk. Effective data-race detection for the kernel. In Proceedings
of the 9th USENIX Conference on Operating Systems Design and Imple-
mentation (OSDI ’10), Vancouver, BC, Canada, October 2010.

[15] ETCD. A distributed, reliable key-value store for the most critical data
of a distributed system. URL: https://github.com/coreos/etcd.

[16] Cormac Flanagan and Stephen N Freund. Atomizer: A dynamic atomic-
ity checker for multithreaded programs. In Proceedings of the 31st ACM
SIGPLAN-SIGACT symposium on Principles of programming languages
(POPL ’04), Venice, Italy, January 2004.

[17] Qi Gao, Wenbin Zhang, Zhezhe Chen, Mai Zheng, and Feng Qin. 2nd-
strike: Toward manifesting hidden concurrency typestate bugs. In
Proceedings of the 16th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS ’11),
Newport Beach, California, USA, March 2011.

[18] GitHub. The fifteen most popular languages on GitHub. URL:
https://octoverse.github.com/.

[19] Google. A high performance, open source, general RPC framework that
puts mobile and HTTP/2 first. URL: https://github.com/grpc/grpc-go.

[20] Google. Effective Go. URL: https://golang.org/doc/effective_go.html.
[21] Google. Effective Go: Concurrency. URL:

https://golang.org/doc/effective_go.html#concurrency.
[22] Google. RPC Benchmarking. URL:

https://grpc.io/docs/guides/benchmarking.html.

[23] Google. The Go Programming Language – Release History. URL:
https://golang.org/doc/devel/release.html.

[24] Rui Gu, Guoliang Jin, Linhai Song, Linjie Zhu, and Shan Lu. What
change history tells us about thread synchronization. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering,
Bergamo, Italy, August 2015.

[25] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa,
Tiratat Patana-anake, Thanh Do, Jeffry Adityatama, Kurnia J. Eliazar,
Agung Laksono, Jeffrey F. Lukman, Vincentius Martin, and Anang D.
Satria. What bugs live in the cloud? a study of 3000+ issues in cloud
systems. In Proceedings of the ACM Symposium on Cloud Computing
(SOCC’ 14), Seattle, Washington, USA, November 2014.

[26] Hectane. Lightweight SMTP client written in Go. URL:
https://github.com/hectane.

[27] C. A. R. Hoare. Communicating Sequential Processes. Communications
of the ACM, 21(8):666-677, 1978.

[28] Omar Inverso, Truc L. Nguyen, Bernd Fischer, Salvatore La Torre, and
Gennaro Parlato. Lazy-cseq: A context-bounded model checking tool
for multi-threaded c-programs. In 30th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE ’15), Lincoln, Nebraska,
USA, November 2015.

[29] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan
Lu. Understanding and detecting real-world performance bugs. In
Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’ 12), Beijing, China, June
2012.

[30] Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit. Au-
tomated atomicity-violation fixing. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI’ 11), San Jose, California, USA, June 2011.

[31] Guoliang Jin, Aditya V. Thakur, Ben Liblit, and Shan Lu. Instrumenta-
tion and sampling strategies for cooperative concurrency bug isolation.
In Proceedings of the ACM International Conference on Object oriented
programming systems languages and applications (OOPSLA ’10), Reno/-
Tahoe, Nevada, USA, October 2010.

[32] Guoliang Jin, Wei Zhang, Dongdong Deng, Ben Liblit, and Shan Lu.
Automated concurrency-bug fixing. In Proceedings of the 10th USENIX
Conference on Operating Systems Design and Implementation (OSDI’12),
Hollywood, California, USA, October 2012.

[33] Pallavi Joshi, Chang-Seo Park, Koushik Sen, and Mayur Naik. A ran-
domized dynamic program analysis technique for detecting real dead-
locks. In Proceedings of the 30th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI ’09), Dublin, Ireland,
June 2009.

[34] Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, and George Candea.
Deadlock immunity: Enabling systems to defend against deadlocks. In
Proceedings of the 8th USENIX Conference on Operating systems design
and implementation (OSDI ’08), San Diego, California, USA, December
2008.

[35] Daniel Kroening, Daniel Poetzl, Peter Schrammel, and Björn Wachter.
Sound static deadlock analysis for c/pthreads. In 31st IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE ’16),
Singapore, Singapore, September 2016.

[36] Kubernetes. Production-Grade Container Orchestration. URL:
https://kubernetes.io/.

[37] Leslie Lamport. Concurrent Reading and Writing. Communications of
the ACM, 20(11):806-811, 1977.

[38] Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida.
Fencing off go: Liveness and safety for channel-based programming.
In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL ’17), Paris, France, January 2017.

[39] Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida.
A static verification framework for message passing in go using be-
havioural types. In IEEE/ACM 40th International Conference on Software
Engineering (ICSE ’18), Gothenburg, Sweden, June 2018.

[40] Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and
Haryadi S. Gunawi. Taxdc: A taxonomy of non-deterministic concur-
rency bugs in datacenter distributed systems. In Proceedings of the
21th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’16), Atlanta, Georgia, USA,
April 2016.

[41] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and
Chengxiang Zhai. Have things changed now?: An empirical study of
bug characteristics in modern open source software. In Proceedings
of the 1st workshop on Architectural and system support for improving
software dependability (ASID ’06), San Jose, California, USA, October
2006.

[42] Ziyi Lin, Darko Marinov, Hao Zhong, Yuting Chen, and Jianjun Zhao.
Jacontebe: A benchmark suite of real-world java concurrency bugs.
In 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE ’15), Lincoln, Nebraska, USA, November 2015.

[43] Haopeng Liu, Yuxi Chen, and Shan Lu. Understanding and generating
high quality patches for concurrency bugs. In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE ’16), Seattle, Washington, USA, November 2016.

[44] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and
Shan Lu. A study of linux file system evolution. In Proceedings of the
11th USENIX Conference on File and Storage Technologies (FAST ’13),
San Jose, California, USA, February 2013.

[45] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning
from mistakes – a comprehensive study of real world concurrency
bug characteristics. In Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’08), Seattle, Washington, USA, March 2008.

[46] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. Avio: Detecting
atomicity violations via access interleaving invariants. In Proceedings
of the 12th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS ’06), San Jose,
California, USA, October 2006.

[47] Brandon Lucia and Luis Ceze. Finding concurrency bugs with context-
aware communication graphs. In Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO ’09),
New York, USA, December 2009.

[48] Kedar S. Namjoshi. Are concurrent programs that are easier to write
also easier to check? InWorkshop on Exploiting Concurrency Efficiently
and Correctly, 2008.

[49] Nicholas Ng and Nobuko Yoshida. Static deadlock detection for con-
current go by global session graph synthesis. In Proceedings of the 25th
International Conference on Compiler Construction (CC ’16), Barcelona,
Spain, March 2016.

[50] Rob Pike. Go Concurrency Patterns. URL:
https://talks.golang.org/2012/concurrency.slide.

[51] Dawson R. Engler and Ken Ashcraft. Racerx: Effective, static detection
of race conditions and deadlocks. In Proceedings of the 19th ACM
symposium on Operating systems principles (SOSP ’03), Bolton Landing,
New York, USA, October 2003.

[52] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro,
and Thomas Anderson. Eraser: A dynamic data race detector for

multithreaded programs. ACM Transactions on Computer Systems,
15(4):391-411, 1997.

[53] Konstantin Serebryany and Timur Iskhodzhanov. Threadsanitizer:
Data race detection in practice. In Proceedings of the Workshop on
Binary Instrumentation and Applications (WBIA ’09), New York, USA,
December 2009.

[54] Vivek K Shanbhag. Deadlock-detection in java-library using static-
analysis. In 15th Asia-Pacific Software Engineering Conference (APSEC
’08), Beijing, China, December 2008.

[55] Francesco Sorrentino. Picklock: A deadlock prediction approach under
nested locking. In Proceedings of the 22nd International Symposium on
Model Checking Software (SPIN ’15), Stellenbosch, South Africa, August
2015.

[56] Kai Stadtmüller, Martin Sulzmann, and Peter" Thiemann. Static trace-
based deadlock analysis for synchronous mini-go. In 14th Asian Sym-
posium on Programming Languages and Systems (APLAS ’16), Hanoi,
Vietnam, November 2016.

[57] Jie Wang, Wensheng Dou, Yu Gao, Chushu Gao, Feng Qin, Kang Yin,
and JunWei. A comprehensive study on real world concurrency bugs in
node.js. In Proceedings of the 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE ’17), Urbana-Champaign,
Illinois, USA, October 2017.

[58] Yin Wang, Terence Kelly, Manjunath Kudlur, Stéphane Lafortune, and
Scott A Mahlke. Gadara: Dynamic deadlock avoidance for multi-
threaded programs. In Proceedings of the 8th USENIX Conference on
Operating systems design and implementation (OSDI ’08), San Diego,
California, USA, December 2008.

[59] Yin Wang, Stéphane Lafortune, Terence Kelly, Manjunath Kudlur, and
Scott A. Mahlke. The theory of deadlock avoidance via discrete control.
In Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages (POPL ’09), Savannah, Georgia,
USA, January 2009.

[60] Wikipedia. Go (programming language). URL:
https://en.wikipedia.org/wiki/Go_(programming_language).

[61] Weiwei Xiong, Soyeon Park, Jiaqi Zhang, Yuanyuan Zhou, and
Zhiqiang Ma. Ad hoc synchronization considered harmful. In Pro-
ceedings of the 9th USENIX Conference on Operating systems design
and implementation (OSDI ’10), Vancouver, British Columbia, Canada,
October 2010.

[62] Jie Yu and Satish Narayanasamy. A case for an interleaving constrained
shared-memory multi-processor. In Proceedings of the 36th annual
International symposium on Computer architecture (ISCA ’09), Austin,
Texas, USA, June 2009.

[63] Yuan Yu, Tom Rodeheffer, andWei Chen. Racetrack: Efficient detection
of data race conditions via adaptive tracking. In Proceedings of the 20th
ACM symposium on Operating systems principles (SOSP ’05), Brighton,
United Kingdom, October 2005.

[64] Wei Zhang, Chong Sun, and Shan Lu. Conmem: detecting severe
concurrency bugs through an effect-oriented approach. In Proceedings
of the 15th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS ’10), Pittsburgh,
Pennsylvania, USA, March 2010.

	Abstract
	1 Introduction
	2 Background and Applications
	2.1 Goroutine
	2.2 Synchronization with Shared Memory
	2.3 Synchronization with Message Passing
	2.4 Go Applications

	3 Go Concurrency Usage Patterns
	3.1 Goroutine Usages
	3.2 Concurrency Primitive Usages

	4 Bug Study Methodology
	5 Blocking Bugs
	5.1 Root Causes of Blocking Bugs
	5.2 Fixes of Blocking Bugs
	5.3 Detection of Blocking Bugs

	6 Non-Blocking Bugs
	6.1 Root Causes of Non-blocking Bugs
	6.2 Fixes of Non-Blocking Bugs
	6.3 Detection of Non-Blocking Bugs

	7 Discussion and Future Work
	8 Related Works
	9 Conclusion
	References

