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ABSTRACT
Online scan engines such as VirusTotal are heavily used by re-

searchers to label malicious URLs and files. Unfortunately, it is not

well understood how the labels are generated and how reliable the

scanning results are. In this paper, we focus on VirusTotal and its 68

third-party vendors to examine their labeling process on phishing

URLs. We perform a series of measurements by setting up our own

phishing websites (mimicking PayPal and IRS) and submitting the

URLs for scanning. By analyzing the incoming network traffic and

the dynamic label changes at VirusTotal, we reveal new insights

into how VirusTotal works and the quality of their labels. Among

other things, we show that vendors have trouble flagging all phish-

ing sites, and even the best vendors missed 30% of our phishing

sites. In addition, the scanning results are not immediately updated

to VirusTotal after the scanning, and there are inconsistent results

between VirusTotal scan and some vendors’ own scanners. Our

results reveal the need for developing more rigorous methodologies

to assess and make use of the labels obtained from VirusTotal.

CCS CONCEPTS
• Security and privacy→ Web application security.
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1 INTRODUCTION
Online scan engines, designed to scan malware files and malicious

websites, are critical tools for detecting new threats [3, 4, 7, 8].

VirusTotal is one of the most popular scanning services that are

widely used by researchers and industry practitioners [8]. Virus-

Total provides both file scan (for malware analysis) and URL scan

services (for detecting phishing and malware hosts). It works with

more than 60 security vendors to aggregate their scanning results.
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VirusTotal is widely used by the research community for data

labeling or system evaluation. Many recent works rely on Virus-

Total’s file scan API [18, 24, 26, 28, 29, 37, 41, 44, 45] and the URL

scan API [16, 17, 20, 30, 35, 36, 38, 40, 42, 46, 47] for data labelling.

For example, if a certain number of vendors label a file/URL as

“malicious”, researchers would take the “malicious” label.

Unfortunately, VirusTotal works like a blackbox, and it is not

well understood how VirusTotal and its vendors generate the labels

for a given URL or file. This leads to critical questions: are these
labels even reliable? Are researchers using VirusTotal in the right way?

In this paper, we take the initial steps to explore how VirusTotal

and its vendors assign labels. We specifically look into how the

URL scan API detects phishing websites. Focusing on phishing scan

allows us to design more focused experiments. At the same time,

we seek to design a methodology that can be adapted to other

applications (e.g., file scan formalware analysis).Wewant to explore

(1) how VirusTotal works with 68 vendors to perform URL scanning

and result updating; (2) how effective these scanners are in detecting

simple andmore advanced phishing sites; (3) how the scanners react

to the dynamic changes of phishing sites. The goal is to provide

insights to guide practitioners to better use VirusTotal.

To answer these questions, we set up a series of phishingwebsites

of our own with freshly registered domains. By submitting the

phishing URLs to various scan APIs (VirusTotal’s APIs and some

vendors’ own APIs), we collect the incoming network traffic to our

phishing sites. At the same time, we continuously query the labels

for these URLs from VirusTotal over a month. We set up two types

of phishing pages that impersonate PayPal [6] and IRS (Internal

Revenue Service) [2] respectively. Across all the experiments, we

have used 66 experimental websites in total. We find that:

• First, most vendors have trouble detecting the simple phish-

ing sites we set up. Over multiple scans, only 15 vendors (out

of 68) have detected at least one of the 36 simple phishing

sites. The best vendor only detected 26 simple phishing sites.

• Second, the detection performance is drastically different

for different phishing sites. The PayPal sites (as a popular

target of phishing) can be detected quickly by more than 10

vendors during the first scan. However, the less common IRS

sites cannot be detected by any of the 68 vendors using the

VirusTotal scan API alone.

• Third, the scanning results of vendors are not updated to

VirusTotal immediately after the scanning is finished. The

delay is caused by the fact that VirusTotal only pulls the pre-

vious scanning results when a new scan request is submitted

for the same URL. A user who simply calls the query/report

API once would not get the updated scanning results.
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• Fourth, VirusTotal has inconsistent results with the vendors’

own scan APIs. The result suggests that third-party vendors

do not always give VirusTotal the scan permission or the

most updated blacklists.

• Fifth, we also tested the effectiveness of obfuscation (methods

used by attackers to modify the website to deliberately evade

detection). We find that VirusTotal scanners can handle some

obfuscation techniques (such as URL shortening), but can be

fooled by other obfuscation methods such as image-based

or code-based obfuscations.

Our work is an initial step to investigate the reliability of labels

obtained from online scanners. Future work can look into other

types of scanning (e.g., malware scanning), and measure the corre-

lation between the labels from different vendors, and develop new

methods to reliably aggregate different scanning results. To facili-

tate future research, we release the collected datasets for sharing
1
.

2 BACKGROUND & RELATEDWORK

VirusTotal APIs. VirusTotal is a popular service that scans

malicious files and web URLs [8]. The URL scanning, in particular,

aims to detect websites that deliver malware or perform phishing.

As shown in Figure 1, VirusTotal works with 68 third-party security

vendors (see the full list at [11]). After an URL is submitted to

VirusTotal through the scan API, VirusTotal pass the URL to these

vendors (i.e., anti-virus engines or online scanning services). The
scanning results will be stored in the VirusTotal database.

VirusTotal provides another querying API (or report API) which
allows people to query the VirusTotal database to check if an URL is

malicious [10]. Given a URL, the API returns the labels from all the

vendors that have previously scanned the URL (and the timestamp

of the scanning). It is not uncommon for vendors to disagree with

each other. For example, a URL might be labeled as “benign” by

Google Safe Browsing, but is labeled as “malicious” by Kaspersky.

Third-party Vendors. Among the 68 third-party vendors, we

find that 18 of them also provide their own scan APIs to the public.

Table 1 lists the names of the 18 vendors. As shown in Figure 1,

these 18 vendors can either be reached via the VirusTotal scan APIs

or via their own APIs directly. For a given vendor, it is not quite

clear if the two APIs return consistent results.

Using VirusTotal for Labeling. VirusTotal has been heavily

used by the research community to label both malicious files [18,

23, 24, 26, 28, 29, 37, 39, 41, 44, 45] and suspicious IPs and URLs [16,

20, 30, 33, 35, 36, 38, 40, 42, 46, 47]. A closer examination shows

that VirusTotal is used in different ways by researchers.

First, given that vendors often do not agree with each other (or

some vendors have never scanned the URL), researchers need to

aggregate the labels to determine if the URL is “malicious”. Recall

that given a URL, more than 60 labels are returned from the vendors

via VirusTotal. We find that most papers define a threshold — if at

least t vendors return a “malicious” label, then the URL is regarded

as malicious. Most papers set t = 1 [16, 17, 20, 30, 35, 36, 40, 47],

while a few papers are more conservative by setting t = 2 or

3 [33, 38, 42] (sometimes researchers use a bigger threshold such

as 40 when labeling malware files [15, 26]). Second, given a vendor,

1
https://github.com/whyisyoung/VirusTotal
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Figure 1: VirusTotal and third-party security vendors.

CyberCrime, Dr.Web, Forcepoint, Fortinet,

Google Safe Browsing, Kaspersky, malwares.com, Netcraft,

NotMining, Phishtank, Quttera, scumware.org, securolytics,

Sucuri Site Check, URLQuery, ZeroCERT, ZeusTracker, zvelo

Table 1: 18 VirusTotal vendors provide their own scan APIs.

its internal model may be updated over time, and thus the labels on

URLs may also change over time. Kantchelian et. al investigate this

issue for the file scan API [22], and show that one needs to wait

for a while before a label gets stabilized. It is unknown if the same

issue applies to URL scan.

Phishing Blacklist. Our work is also related to those that

study phishing blacklists [12, 32, 43]. Phishing blacklists often have

major delays in blocking new phishing sites [14, 19, 31], and suffer

from incomplete coverage [13]. Different blacklists may return

inconsistent results [25]. Our work aims to look deeper into the

process of how phishing URLs get blacklisted (i.e., URL scanning) by
VirusTotal and its vendors. The most relevant work to ours is [32].

The differences are two folds: First, [32] looks into the phishing

blacklists used by different browsers (e.g., Chrome, Safari), while

we focus on how phishing blacklists are aggregated by VirusTotal.

Second, [32] focuses on the cloaking techniques used by phishing

sites, while we focus on the performances of different vendors

(scanners), and their consistency.

3 METHODOLOGY
In this paper, we want to understand how VirusTotal and its ven-

dors scan phishing URLs. We ask key questions regarding how the

labels should be interpreted and used: (1) how effective are Virus-

Total’s vendors (scanners) in detecting basic phishing pages? (2)

how quickly will the scanning results become available? (3) how

consistent are the scanning results across vendors, and between

vendor-APIs and VirusTotal API? (4) how quickly can VirusTotal

react to phishing site changes such as take-down? (5) how much

do basic obfuscation techniques help with evading the detection?

To answer the questions, we set up fresh phishing websites on

newly registered web domains. Then by submitting the phishing

URLs to VirusTotal, we collect incoming network traffic to the

phishing servers and the VirusTotal’s labeling results for these URLs.

We have carefully designed the experiments to ensure research

ethics. We have a detailed discussion on ethics in the Appendix.

3.1 Phishing Site Setups

Phishing Page Content. As shown in Figure 2, we create two

phishing pages that mimic the login pages of PayPal [6] and IRS

(Internal Revenue Service) [2]. PayPal is chosen for its popularity —
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(a) PayPal (b) IRS

Figure 2: Screenshots of experiment phishing pages.
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Figure 3: Illustration of the main experiment on a given
phishing site. The third-party vendor is one of the 18 ven-
dors that provide their own scan APIs.

more than 30% of phishing URLs at major blacklists are targeting

PayPal [34]. IRS, as a comparison baseline, is not commonly targeted.

We replicate the original sites of PayPal and IRS, and modify the

login form so that login information will be sent to our servers.

By default, we disable any form of cloaking for the phishing sites.

Cloaking means a phishing site hides itself by showing a benign

page when it recognizes the incoming request is from a known

security firm [21, 32]. The robots.txt is also set to allow web

crawlers to access the phishing page.

Domain Names. We register fresh domain names for our phish-

ing sites. This is to make sure the domain names do not have any

past history that may interfere with the measurement. To prevent

innocent users from mistyping the domain names (i.e., accidentally
visiting our websites), we register long random strings as domain

names (50 characters each) from NameSilo [5]. For example, one of

the domain names is “yzdfbltrok9m58cdl0lvjznzwjjcd2ihp5pgb
295hfj5u42ff0.xyz”.

Web Hosting. We host the phishing websites at a web hosting

service called Digital Ocean [1] on static IPs. Before the experiment,

we made sure all the IPs and domain names are publicly accessible,

and are not blacklisted by any major blacklist. We have informed

Digital Ocean of our research, and have received their consent.

3.2 Experiment Design
The experiments were conducted from March to April in 2019,

including a main experiment and a baseline experiment.

Main Experiment. The main experiment is designed to mea-

sure (a) the phishing detection accuracy of VirusTotal and vendors;

(b) the potential inconsistency between VirusTotal API and the

vendors’ APIs; (c) the reaction of VirusTotal to changes of phishing

sites. Recall that there are 18 vendors that have their own scan APIs.

To accurately capture their impact, we set up separate phishing

sites (1 PayPal and 1 IRS) for each vendor (36 sites in total).

For each phishing site, we conduct a 4-week experiment as il-

lustrated in Figure 3. We periodically submit the phishing URL

Exp. Brand # Requests # IPs # Mal. Labels
Avg. (STD) Avg. (STD) Avg. (STD)

Main

PayPal 12,327 (2,478) 2,384 (290) 16.6 (1.1)

IRS 335 (364) 146 (107) 13.5 (0.5)

Baseline

PayPal 6,291 2,033 0

IRS 30 26 0

Table 2: The number of incoming network requests to fetch
the phishing URLs, and the unique number of IPs per phish-
ing site over the 4-week period. We show the average num-
ber of total “malicious” labels from VirusTotal per phish-
ing site (if a vendor once gave a malicious label and then
changed it back later, we still count it).

to VirusTotal’s scan API. The VirusTotal scan API will trigger the

scanning of (some of) the third-party vendors. VirusTotal scanning

is conducted twice a week on Mondays and Thursdays. At the same

time, we schedule 4 external events (on the Mondays of each week):

(1) Week1: We put the phishing site online.

(2) Week2: We submit the phishing URL to one of the 18 ven-

dors who have their own scan APIs.

(3) Week3: We take down the phishing page, and replace it with

a benign page (i.e., a blank page).

(4) Week4: We submit the phishing URL to the same third-party

vendor as week2.

Note that (2) and (4) are designed to measure the consistency be-

tween VirusTotal scanning and the vendors’ own scanning. Each

phishing site is only submitted to one vendor API so that we can

measure the differences between vendors.

During the experiment, we collect two types of data. First, we col-

lect the labels for all the phishing URLs using VirusTotal’s querying
API. Note that after a URL is submitted for scanning, the scanning

results (i.e., labels) might not be immediately available in the Virus-

Total database. So we crawl the labels every 60 minutes to track

the fine-grained dynamic changes. Second, we log the incoming

network traffic to all of the phishing servers.

Baseline Experiment. The baseline experiment is to measure

the long-term reaction of VirusTotal after a single VirusTotal scan.
We set 2 additional phishing sites (PayPal and IRS) and only submit

the URLs to VirusTotal scan API for once at the beginning of the first

week. Then we monitor incoming traffic to the phishing servers,

and query the VirusTotal labels in the next 4 weeks.

Summary. In total, 38 websites are set up for our experiments

(36 for main, 2 for baseline). There are 19 PayPal sites and 19 IRS

sites. All the PayPal sites have identical web page content (hosted

under different domain names). All the IRS sites share the same

content (with different domain names).

4 MEASUREMENT RESULTS
Our measurement returns a number of important results.

(a) IncomingNetwork Traffic. Table 2 shows the statistics the

incoming network requests that fetch the phishing URLs. Clearly,

PayPal sites have received significantly more network traffic than

IRS sites. On average, each PayPal site has received more than

12,000 requests while an IRS site has only received 335 requests.
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Figure 4: The number of incoming net-
work requests per day per phishing site
(main experiment).
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Figure 5: The number of incoming net-
work requests per day per phishing site
(baseline experiment).
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Figure 6: The average, maximum, and
minimum number of malicious labels
per site (main experiment).

As shown in Figure 4, IRS sites barely have any traffic in the first

week, and only start to receive more traffic in the second week.

Interestingly, the traffic volume is correlated with the “labels”

received by the sites. Figure 6 shows the number of VirusTotal

vendors that flagged a phishing site as malicious (i.e., number of

malicious labels per site). PayPal sites get flagged by some vendors

right away in the first week, while IRS sites are only detected at a

much later time (after vendor API scan). The hypothesis is that after

a phishing site is flagged by some vendors, then it will be shared with
other vendors to perform more in-depth scanning. Figure 5 further

confirms this intuition. For the IRS site (baseline experiment), we

only submit its URL to VirusTotal scan for once which failed to

detect it. Then there is almost nomore traffic in the following weeks.

The PayPal site, since it got flagged after the scan, continues to

receive incoming traffic.

After looking into the traffic log, we notice that not all the re-

quests are pointed towards the submitted phishing URLs. Some scan-

ners also attempted to retrieve the resources under the root direc-

tory (“/”) or non-existing pages such as “payload.php” or “shell.php”.

For example, in the baseline experiment, the PayPal site has received

6,291 requests for the phishing URL (see Table 2), and 19,222 re-

quests for other URLs or resources. This indicates that the scanners

are looking for signs of malware hosting or website compromise.

(b) Delay of Label Updating. A closer examination of Figure 6

shows that VirusTotal has a delay of updating the labels to its data-

base. More specifically, the x-axis in Figure 6 is the label querying

time (label crawling is done every hour). We observe that only after

the second VirusTotal scan will the first scan result get updated to

VirusTotal database.

For example, in the first week, we submit the PayPal URLs to

VirusTotal on day-1. The querying API returns “benign” labels since

these URLs were never scanned before by any vendor. Then after we

submit the URLs again on day-4, the querying API starts to return

“malicious” labels from some vendors. Based on the “scanning time”

on the returned labels, we see that theses “malicious” labels are

actually originated from the scan of day-1. This means, although

some vendors have already detected the phishing page on day-1,

the results would not be updated to VirusTotal database until the

next scan request on day-4.

The result shows VirusTotal uses “pull” (instead of “push”) to

get scanning results from vendors. The pull action is only triggered

by VirusTotal’s scan API but not the querying API. Our baseline

Vendor Name Brand VTotal Vendor VTotal
Before (week-2) After

Forcepoint PayPal 0 1 0
Sucuri Site Check PayPal 0 1 0
Quttera PayPal 0 1 0
URLQuery PayPal 0 1 0
ZeroCERT PayPal 0 1 0
Fortinet IRS 0 1 0

Google Safe Brows.

PayPal 0 1 0
IRS 0 1 0

Netcraft IRS 0 1 1

Table 3: Inconsistent labels between VirusTotal scan and
Vendor scan. “1” means malicious and “0” means benign.

experiment further confirms that vendors do not proactively push

new results to VirusTotal database. In the baseline setting, we only

submit the URL to VirusTotal on day-1 without any further ac-

tions. By querying the labels for the next 4 weeks, we confirm

that the scanning results are never updated back to VirusTotal. If

a researcher only scans a URL once and queries the database af-

terward, she cannot get the updated labels. Instead, the researcher

needs to perform two scans: one for URL scanning, and the other

for triggering the database update.

(c) PayPal vs. IRS. The VirusTotal scan during week-1 failed

to detect any IRS website (Figure 6). After we directly submitted

the IRS URLs to individual vendors, some of the IRS pages started

to be flagged. On the contrary, all PayPal sites were flagged by

at least 10 vendors during week-1. One hypotehsis is that PayPal

phishing pages are more common, and thus the vendors’ models

(e.g., classifiers) are better trained to detect them. To validate this

hypothesis, more rigorous tests are needed by testing a wide range

of phishing pages (content), which is part of our future work.

(d) VirusTotal vs. Vendors. The vendors’ own scan APIs and

VirusTotal’s scan APIs do not always return consistent results. Note

that when we use the vendor’s API, the API returns the scanning

result too. Unlike VirusTotal API, vendors’ own APIs ask the user

to wait until the scanning is finished so that the user gets the real

scanning result. In Table 3, we show the vendor API results (on

Monday of week 2), and the VirusTotal labels right before and after

that (results for the Thursday of week 1 and the Thursday of week

2 respectively). We have considered the delay of label updating of

VirusTotal and manually aligned the scan time accordingly.
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Rank Vendor Total PayPal IRS
1 Netcraft 26 14 12

2 Emsisoft 26 14 12

3 Fortinet 26 14 12

4 Sophos 23 14 9

5 CRDF 17 14 3

6 Malwarebytes hpHosts 15 14 1

7 BitDefender 15 14 1

8 ESET 15 14 1

9 G-Data 14 14 0

10 Kaspersky 13 1 12

11 Phishtank 10 10 0

12 CyRadar 8 5 3

13 Avira 6 0 6

14 CLEAN MX 6 4 2

15 Trustwave 3 3 0

Table 4: A list of all the vendors that successfully detected
the phishing pages (during the first 2 weeks).

As shown in Table 3, there are in total 8 vendors that show incon-

sistent results. Most vendors have a “0-1-0” pattern for PayPal sites

including Forcepoint, Sucuri, Quttera, URLQuery, ZeroCERT, and
Google Safe Browsing. This means through VirusTotal scan, these

vendors return the label “benign”, even though their own scan APIs

can detect that the page as “malicious”. A possible explanation is

that these vendors did not give VirusTotal the permission to trigger

their scanners. Instead, VirusTotal runs stripped-down versions of

the scanners [9, 27], which cannot detect the phishing page.

For IRS pages, we show that Fortinet, Google Safe Browsing,
and Netcraft have detected these IRS pages via their own scan

APIs. However, only Netcraft has shared this result to VirusTotal

after the scan. It should be noted that we have tried to analyze

which scanners indeed visited the phishing sites. This attempt

failed because scanners were actively hiding their identity by using

proxies and cloud services (see §5). Overall, the result shows the

VirusTotal does not always reflect the best detection capability of a

vendor. If possible, researchers should cross-check the results with

individual vendors’ APIs.

(e) Detection Accuracy of Vendors. In Table 4, we list all 15

vendors that detected at least one phishing site during the first two

weeks (we took down the phishing pages after week-2). We show

that even the best vendors cannot detect all phishing sites. The most

effective vendors such as Netcraft flagged 14 (out of 18) PayPal

pages and 12 (out of 18) IRS pages. It is not clear why some sites are

not detected given that all 18 PayPal (IRS) sites have the identical

content (except for using a different random string as the domain

name). In addition, we observe that some of the vendors always flag

the same subset of phishing sites. For example, Netcraft, Emsisoft,
and Fortinet flagged the same 26 sites. Similarly, Malwarebytes,
BitDefender and ESET flagged the same 15 sites. This indicates

the possibility that certain vendors would copy (synchronize with)

each other’s blacklist. To validate this hypothesis, more rigorous

experiment is needed in future work.

(f) Reaction to Phishing Take-down. We observe that ven-

dors do not quickly take a URL off the blacklist after the phishing

site is taken down. On the Monday of week-3, we took down all

the phishing pages and replaced them with benign pages. However,
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Figure 7: Four vendors have a sign of reaction to the phish-
ing take-down (PayPal sites).

Figure 6 shows the number of malicious labels does not drop even

after multiple re-scans.

After examining the results for each vendor, we find 4 vendors

that flip some “malicious” labels to “benign” after the third week

(for PayPal sites only). Figure 7 shows these 4 vendors and the

number of phishing sites they flagged over time. CyRadar and CLEAN
MX already started to flip their malicious labels in week-2 (before

phishing take-down), which is not necessarily a reaction to the take-

down. Fortinet flipped the label on one site in week-4. Avira is
likely to be reacting to the take-down since it changed all “malicious”

labels to “benign” right after the event. Interestingly, the labels were

quickly reversed to “malicious” in the next scan.

5 OTHER CONTROLLED EXPERIMENTS
Our experiments lead to new questions: which vendors have in-

deed visited the phishing sites? What would happen if a phishing

site applies simple obfuscation techniques or sets “robots.txt” to
prevent crawling? How well can VirusTotal detect benign pages?

To answer these questions, we conduct additional controlled exper-

iments by setting up 27 new sites.

Vendor Identification. Vendor identification based on the net-

work traffic is very difficult. On average each phishing site was

visited by more than 2000 unique IPs (PayPal, Table 2). Leverag-

ing the whois records, User-Agents, and the known IP ranges of

security vendors, we only successfully confirmed the identity of 5

vendors, including Dr. Web, Forcepoint, Google Safe Browsing,
Quttera, and ZeroCERT. We also tried more controlled experiments

by submitting URLs to each of the 18 vendors (one URL per vendor).

Even so, we cannot build a reliable identifier for all 18 vendors. The

reason is that most vendors route their traffic via proxies or cloud

services. The IP set of each vendor dynamically changes too. 32.9%

of the traffic comes from known cloud services such as Amazon,

Digital Ocean, M247, Feral Hosting, and Linode. It is likely that

security vendors are trying to hide their identity to overcome the

cloaking of phishing sites [32].

Additional Experiments on Label Updating. So far, our

main experiment shows that it takes two scan requests to push

the scanning results back to VirusTotal (§4(b)). However, the previ-

ous experiment is limited to new URLs that are never detected by

vendors before. A follow up question is, what if the URL is already

blacklisted by the third-party vendor? Do we still need two requests

to push the label to VirusTotal? To answer this question, we per-

formed a small controlled experiment. We set up three fresh PayPal
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Obfuscation # Sites Malicious Labels Per Site
Method (PayPal) Min. Max. Avg.
Redirection 2 12 12 12

Image 2 3 6 4.5

PHP Code 2 1 3 2

Table 5: The number of “malicious” labels per site after ap-
plying different obfuscation methods.

pages under three new domain names. Then we choose NetCraft,
Forcepoint, and Fortinetwhich are capable of detecting the Pay-

Pal page in the main experiment. We first submit the three URLs to

individual vendors for scanning (one URL per vendor). Same as be-

fore, the URLs get immediately blacklisted by the respective vendor.

Then we submit the URLs to VirusTotal for the first scan. VirusTotal

returns a “benign” label for all the URLs. After 4 days, we submit the

URL to VirusTotal for the second scan. Interestingly, the returned

labels are still “benign”. This indicates NetCraft, Forcepoint, and
Fortinet do not share their blacklists with VirusTotal. Otherwise,

the labels should have been “malicious” after the second VirusTotal

scan. It is more likely that VirusTotal runs stripped-down versions

of the scanners that fail to detect the phishing pages .

Impact of Obfuscation. Obfuscation is used to deliberately

make it harder to understand the intent of the website. In this

case, the attacker can apply simple changes so that their website

still looks like the target website, but the underlying content (e.g.,
code) becomes harder to analyze. We examine the impact of three

obfuscation methods: (1) Redirection: we use a URL shortener

service to obfuscate the phishing URL. (2) Image-based Obfuscation:
we take a screenshot of the PayPal website, and use the screenshot

as the background image of the phishing site. Then we overlay the

login form on top of the image. In this way, the phishing site still

looks the same, but the HTML file is dramatically different. (3) PHP
Code Obfuscation: within the original PHP code, we first replace

all user-defined names with random strings (without affecting the

functionality). Then we remove all the comments and whitespace,

and output encoding in ASCII. For each of the obfuscation methods,

we build 2 new PayPal sites (6 sites in total). We submit the URLs

to VirusTotal for scan, wait for a week, submit again (to trigger

database update), and retrieve the labels.

Table 5 shows the number of malicious labels per site. As a

comparison baseline, without obfuscation, the PayPal site in the

main experiment (§4) received 12.1 malicious labels on average. This

number is calculated based on the first scan of week-2 in the main

experiment (instead of the four weeks of result) to be consistent

with the setting of the obfuscation experiment. We observe that

redirection does not help much. However, image and code-based

obfuscations are quite effective — the average number of malicious

labels drops from 12.1 to 4.5 and 2 respectively. This suggests that

these vendors are still unable to handle simple obfuscation schemes.

Robots.txt. To see the impact of robots.txt, we set up 18

new domains where the robots.txt disallows crawling. Then we

submit these 18 URLs to the 18 vendors’ scan APIs. We find that the

traffic volumes are still comparable with the previous experiment.

The result indicates that most scanners would ignore robots.txt.

Detection of Benign Pages. All the experiments so far are

focused on phishing pages. A quick follow-up question is how well

can VirusTotal detect benign pages. We did a quick experiment

by setting up one benign page under a new domain name (a long

random string as before). The page is a personal blog, and it does

not try to impersonate any other brand. We submit the URL to

VirusTotal scan API twice with 3 days apart, and then monitor the

label for a month. We find that the labels are always “benign”. Given

the limited scale of this experiment, it is not yet conclusive about

VirusTotal’s false positive rate. At least, we show that VirusTotal

did not incorrectly label the website as “malicious” just because it

has a long random domain name.

6 DISCUSSIONS & OPEN QUESTIONS
Our experiments in §4 and §5 collectively involve 66 (38+28) exper-

imental websites. We show that vendors have an uneven detection

performance. In the main experiment, only 15 vendors have de-

tected at least one site. Even the best vendor only detected 26 out

of 36 sites. Given that vendors have an uneven capability, their

labels should not be treated equally when aggregating their results.

In addition, we show the delays of label updating due to the non-

proactive “pull” method of VirusTotal. We also illustrate the label

inconsistency between VirusTotal scan and the vendors’ own scans.

As a simple best-practice, we suggest future researchers scanning

the URLs twice to obtain the updated labels and cross-checking the

labels with the vendors’ own APIs.

Limitations. Our experiments have a few limitations. First, the

long domain names may affect the detection accuracy. However, we

argue that the long domain names actually make the websites look

suspicious, and thus make the detection easier. The fact that certain

scanners still fail to detect the phishing sites further confirms the

deficiency of scanners. Second, the use of “fresh” domain names

may also affect the detection performance of vendors, since certain

vendors might use “infection vendors” as features (e.g., reports
from the victims of a phishing site). In practice, the vendors might

perform better on phishing sites that already had victims.

Future Work. During our experiments, we observe interesting

phenomena that lead to new open questions. First, the vendors’

models perform much better on PayPal pages than on IRS pages.

Future work can further investigate the “fairness” of vendors’ classi-

fiers regarding their performance on more popular and less popular

phishing brands. Second, we observe that some vendors always

detect the same subset of phishing sites (Table 4). If these vendors in-
deed fully synchronize their labels, then their labels are essentially

redundant information. As such, these vendors should not be treated

as independent vendors when aggregating their votes. Future work

can further investigate the correlation of results between differ-

ent vendors. Third, many vendors (e.g., Kaspersky, Bitdefender,
Fortinet) also provide API for file scanning to detect malware. File

scan can be studied in a similar way, e.g., submitting “ground-truth”

malware and benign files to evaluate the quality of labels and the

consistency between vendors and VirusTotal.
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APPENDIX - RESEARCH ETHICS
We want to provide a detailed discussion on the research ethics.

Internet users. We have taken active steps to make sure our

experiments do not involve or harm any users. Given that our

experiments require hosting public websites, we need to prevent

real users from accidentally visiting the experimental websites and

revealing sensitive information. First, all the phishing websites use

long random string as domain names (50 random characters). It is

very unlikely that users would mistype an actual website’s domain

name in the address bar to reach our websites.

Second, we never advertise the websites other than submitting

them to scanners. We have checked popular search engines (Google,

Microsoft Bing) by searching keywords such as “PayPal”, “IRS”, and

“tax”.We did not find our phishingwebsites indexed after examining

the first 10 pages of search results. It is very unlikely real users

would find our website via search engines.

Third, to prevent the servers accidentally storing sensitive user

information (e.g., password), we have modified the PayPal and IRS

phishing kits when deploying the websites. More specifically, for

any HTTP POST requests, the server will automatically parse and

discard the data fields without storing the data. Even if a user ac-

cidentally submitted sensitive information via the login form, the

data would never be stored in the database or logs. Throughout

our experiments, we never received such requests. After the exper-

iments, all phishing pages are taken offline immediately. Certain

readers may ask, is it possible that the scanners actually recognized

that the password was never stored and thus labeled the website as

“benign”? We believe this is unlikely because the action happens

internally at the server side and the server provides no feedback

or error messages. The internal action is invisible to the scanners.
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From a scanner perspective, the website behaves like a typical phish-

ing site: (1) a PayPal login page is hosted under a server whose

domain name is a long random string; (2) the website sends the

login password to a web hosting service instead of paypal.com.

VirusTotal and its vendors. Once the URLs are submitted,

all the scanning is performed automatically without any human

involvement. Given the relatively small-scale of the experiments,

we expect the impact to these services (e.g., scanning workload) is

minimal.

Domain registrar and web hosting services. We have noti-

fied them about our experiments before we start, and have received

their consent. This allows us to run the experiments without worry-

ing about any interruption from the domain registrar and hosting

services. We do notice that 5 of the 36 URLs used in the main ex-

periment are later included by DNS blacklists (after some vendors

of VirusTotal flagged them).

We argue that the experiments’ benefits overweight the potential

risk. A deeper understanding of how VirusTotal and vendors label

phishing sites helps to inform better methods for phishing detection,

and inspire new research to improve the label quality.


