
Rust-lancet: Automated Ownership-Rule-Violation Fixing with
Behavior Preservation

Wenzhang Yang∗
yywwzz@mail.ustc.edu.cn

University of Science and Technology
of China

Anhui, China

Linhai Song
songlh@ist.psu.edu

Pennsylvania State University
Pennsylvania, USA

Yinxing Xue†∗
yxxue@ustc.edu.cn

University of Science and Technology
of China

Anhui, China

ABSTRACT

As a relatively new programming language, Rust is designed to pro-
vide both memory safety and runtime performance. To achieve this
goal, Rust conducts rigorous static checks against its safety rules
during compilation, effectively eliminating memory safety issues
that plague C/C++ programs. Although useful, the safety rules pose
programming challenges to Rust programmers, since programmers
can easily violate safety rules when coding in Rust, leading their
code to be rejected by the Rust compiler, a fact underscored by a
recent user study. There exists a desire to automate the process of
fixing safety-rule violations to enhance Rust’s programmability.

In this paper, we concentrate on Rust’s ownership rules and de-
velop rust-lancet to automatically fix their violations. We devise
three strategies for altering code, each intended to modify a Rust
program and make it pass Rust’s compiler checks. Additionally,
we introduce mental semantics to model the behaviors of Rust
programs that cannot be compiled due to ownership-rule viola-
tions. We design an approach to verify whether modified programs
preserve their original behaviors before patches are applied. We
apply rust-lancet to 160 safety-rule violations from two sources,
successfully fixing 102 violations under the optimal configuration
— more than rustc and six LLM-based techniques. Notably, rust-
lancet avoids generating any incorrect patches, a distinction from
all other baseline techniques. We also verify the effectiveness of
each fixing strategy and behavior preservation validation and affirm
the rationale behind these components.

CCS CONCEPTS

• Software and its engineering → General programming lan-

guages; Error handling and recovery; Software development

techniques; Error handling and recovery.

KEYWORDS

Rust, Program Repair, Compiler Error

∗Also with Suzhou Institute for Advanced Study University of Science and Technology
of China.
†Yinxing Xue is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04. . . $15.00
https://doi.org/10.1145/3597503.3639103

ACM Reference Format:

Wenzhang Yang, Linhai Song, and Yinxing Xue. 2024. Rust-lancet: Auto-
mated Ownership-Rule-Violation Fixing with Behavior Preservation. In
2024 IEEE/ACM 46th International Conference on Software Engineering (ICSE
’24), April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3597503.3639103

1 INTRODUCTION

As a statically-typed young programming language, Rust has rapidly
gained popularity [28]. The language’s core innovation lies in its
safety mechanism and the associated safety rules. Rust enforces
these rules to check and eliminate memory bugs during compilation,
allowing it to maintain the execution speed of its compiled exe-
cutable programs comparable to those written in C/C++. Rust’s com-
bination of safety and performance has led to its adoption in build-
ing numerous safety-critical low-level software [1, 15, 33, 47, 50].

Unfortunately, Rust has a steep learning curve [10, 62], and its
safety rules pose programming challenges to its programmers [66].
Rust programmers can easily write code that violates Rust’s safety
rules, leading to compiler errors, given that Rust’s safety rules are
distinctive, and both the related grammar and semantics differ sig-
nificantly from those of traditional programming languages. To
make things worse, the Rust compiler typically fails to provide
sufficient information for programmers to comprehend the com-
piler errors resulting from safety-rule violations [66]. Furthermore,
safety-rule violations hinder the application of many automated
techniques to Rust, such as code generation for Rust [54], trans-
lating C/C++ programs to Rust [19, 22, 63], and fuzzing Rust li-
braries [24]. Consequently, there is a need to automatically patch
compiler errors stemming from safety-rule violations, with the goal
of enhancing Rust’s programmability and facilitating the utilization
of other Rust-related techniques.

Automatically fixing safety-rule violations in Rust programs
presents two primary challenges, underscoring the inadequacy of
existing automated program repair (APR) techniques for this task.
The first challenge is how to design suitable code-change strategies
to handle safety-rule violations. Rust’s safety rules are exceptionally
unique, and conventional APR techniques tailored for C/C++ and
Java programs are unaware of Rust’s safety rules [11, 13, 16, 20,
27, 34, 41, 49, 52, 59]. Consequently, their fixing templates and
machine learning models are ill-equipped to address safety-rule
violations specific to Rust. The second challenge lies in determining
how to validate whether patches maintain the original behaviors of
programs. Since the programs, prior to applying the patches, cannot
be compiled, we are unable to follow Rust’s semantics to infer
their behaviors or execute the compiled programs to observe their
behaviors like existing techniques [12, 30, 32, 32, 43, 56–58, 60, 61].

https://orcid.org/0009-0006-7836-1246
https://orcid.org/0000-0002-3185-9278
https://orcid.org/0000-0002-2979-7151
https://doi.org/10.1145/3597503.3639103
https://doi.org/10.1145/3597503.3639103

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Wenzhang Yang, Linhai Song, and Yinxing Xue

In this paper, we build rust-lancet to automatically fix compiler
errors stemming from ownership-rule violations in Rust programs
while preserving the original program behaviors. rust-lancet
specifically focuses on ownership-rule violations, given that own-
ership is a key concept in Rust’s safety mechanism, and such vio-
lations (e.g., using a moved value, having two mutable references
to the same object coexisting) are commonly encountered by Rust
programmers in their daily practices [66]. rust-lancet takes a
Rust program with a compiler error as input and attempts to fix the
error through multiple rounds. The process continues until rust-
lancet either discovers a patch or reaches a configured round limit.
In each round, rust-lancet systematically applies its three fixing
strategies, and validates whether the modified program can be suc-
cessfully compiled and whether the fixing preserves the program’s
behaviors for each strategy.

To tackle the first challenge, we design the three fixing strate-
gies by taking into account Rust’s safety mechanism comprehen-
sively: owner loop (OL), reordering (REO), and lattice-based weaken
(WKN). The OL strategy targets errors where an older owner is used
after its ownership has been moved to a new owner. It accomplishes
this by substituting the use of the old owner variable with the new
one. REO relocates an instruction to a preceding location. It can
relocate the use of a value before where it is moved and resolve
the issue of two mutable references to the same object coexisting.
WKN substitutes an operation with a high likelihood of causing a
violation with another one carrying a lower likelihood, determined
by a constructed lattice. Each of these strategies contributes distinct
value in enhancing the likelihood of passing Rust’s compiler checks
for Rust programs.

To address the second challenge, we devise mental semantics to
model the intentions of programmers when coding in Rust. Mental
semantics ease the constraints imposed by Rust’s safety rules, as
their purpose is tomodel the behaviors of programs that have safety-
rule violations and cannot be compiled. To perform the detailed
validation for a patch, rust-lancet first computes the condition
under which the program’s behaviors remain unchanged after the
patch is applied. Subsequently, rust-lancet instruments an asser-
tion and other relevant code to examine this condition. In the end,
rust-lancet performs symbolic execution to validate whether the
inserted assertion holds true for all program paths, with reference
to mental semantics. If successful, rust-lancet concludes that the
patch preserves the program’s behaviors.

To evaluate rust-lancet, we collect 160 safety-rule violations
from two sources [9, 66] and compare rust-lancet with rustc
and six other large language model (LLM)-based techniques. In
total, rust-lancet patches 102 violations under the optimal set-
ting, addressing 57 more violations than rustc and 18 more vi-
olations than the best LLM-based baseline technique. Moreover,
rust-lancet does not generate any wrong patches (false positives),
whereas all baseline techniques exhibit false positives, with the
potential for such occurrences reaching 115. We meticulously ex-
amine rust-lancet’s results by systematically disabling each of
its fixing strategies and behavior preservation validation. We ob-
serve that the fully-featured rust-lancet patches most violations,
and disabling behavior preservation validation leads to two false
positives, underscoring the rationality of rust-lancet’s design. In
a user study involving three experts, we observe that rust-lancet

1 let a = "1".to_string();

2 let new_a = a;

3 println!("{}", a);

(a) Intra-scope movement

1 fn foo(a: String){

2 loop {

3 foo(a);}}

(b) Inter-scope movement

1 let p1 = &mut a;

2 let p2 = &a;

3 println!("{}", *p1);

4 println!("{}", *p2);

(c) End at distinct locations

1 let p1 = &mut a;

2 let p2 = &a;

3 println!("{}{}",

4 *p1, *p2);

(d) End at the same location

1 let p1 = &mut a;

2 let p2 = &a;

3 println!("{}", *p2);

4 println!("{}", *p1);

(e) Lifetime cover

1 // hellothere.x is a reference

2 match hellothere.x {

3 box E::Bar(x) =>

4 println!("{}",x),

5 _ => {}}

(f) Move through a reference

Figure 1: Error categories

patches a number of violations comparable to Rust experts, but
with a significantly shorter processing time.

Overall, we make the following three contributions:

• We devise three fixing strategies tailored to address ownership-
rule violations in Rust programs by taking careful consideration
of the relevant safety rules.

• We introduce mental semantics to model behaviors of Rust pro-
grams with ownership-rule violations. Additionally, we develop
an approach to validate whether patches addressing ownership-
rule violations preserve program behaviors, utilizing mental se-
mantics as a reference.

• We build rust-lancet by integrating the fixing strategies and
behavior preservation validation. We conduct thorough experi-
ments to evaluate rust-lancet and confirm its fixing capability,
accuracy, and advancement over the baseline techniques.

All our code and experimental data can be found at https://sites.
google.com/view/rust-lancet/index.

2 BACKGROUND

This section gives the background of this paper, including Rust’s
unique safetymechanism, programming challenges caused by Rust’s
safety checks, and the problem scope of this paper.

2.1 Rust’s Safety Mechanism

Rust constructs its safety mechanism based on two fundamental
concepts: ownership and lifetime. In essence, Rust enforces that each
value has one and only one owner variable (i.e., the name-binding
variable of the value), and the value is dropped (freed) when its
owner’s lifetime ends, such as at the end of the owner variable lexi-
cal scope. However, this basic safety rule can be overly restrictive,
particularly when implementing low-level systems software. Thus,
Rust provides some extensions to the basic rule to enable better
programming flexibility.

First, Rust allows moving the ownership of a value to a different
owner or a different scope but it prohibits the former owner from
being used anymore after the move. For example, in Figure 1a,
variable a is the owner of the string after line 1, and the ownership

https://sites.google.com/view/rust-lancet/index
https://sites.google.com/view/rust-lancet/index

Rust-lancet: Automated Ownership-Rule-Violation Fixing with Behavior Preservation ICSE ’24, April 14–20, 2024, Lisbon, Portugal

is then moved to new_a at line 2. Thus, Rust prohibits the use of a
at line 3. Similarly, when function foo recursively calls itself at line
3 in Figure 1b, the ownership of a is moved to the callee (a different
scope). As this move happens in a loop and has already occurred in
the first iteration, Rust disallows the use of a in following iterations.

Second, Rust provides the ability to temporarily borrow the
ownership of a value through references. Those references can be
mutable, supporting both read and write accesses, or immutable,
only allowing read accesses. Rust enforces the rules that a mutable
reference cannot coexist with other references to the same variable
and that the ownership cannot be moved through a reference. For
example, in Figure 1c, variable a is borrowedwithmutable reference
p1 at line 1, and then it is borrowed again with immutable reference
p2 at line 2. Moreover, p2 is dereferenced at line 4. Thus, Rust pro-
hibits the use of p1 at line 3. Another reference error is illustrated
in Figure 1f. hellothere.x is moved to the match block at line 2.
However, hellothere.x is a reference and thus Rust disallows this
move.

All the above rules essentially disallow having alias and muta-
bility at the same time, and they can prevent many severe memory
safety issues and thread safety issues. Moreover, all the rules are
checked by the Rust compiler, so that Rust ensures its compiled
executable programs to be as efficient as C/C++ programs.

2.2 Rust’s Programming Challenges

Regrettably, Rust’s safety mechanism and corresponding safety
rules pose unique programming challenges for Rust programmers.
It is easy for them to write code that violates Rust’s safety rules and
is subsequently rejected by the Rust compiler. Recent research con-
firms this observation through an empirical study on Rust-related
Stack Overflow questions and a survey of real-world Rust program-
mers [66]. The researchers report that the second most common
reason for Rust programmers to ask questions on Stack Overflow
is to figure out why their code violates Rust’s safety rules. Fur-
thermore, the researchers also note that a safety rule may be more
difficult to follow in certain programming contexts, and that the
error messages produced by the Rust compiler — the most immedi-
ate feedback for safety-rule violations — may not provide enough
information for programmers to comprehend the violations. Thus,
it is critical to tackle the programming difficulties caused by Rust’s
safety checks and safety rules.

Our solution to these programming challenges is to develop a tool
that can automatically fix safety-rule violations. Upon applying our
tool, the modified Rust file can pass the Rust compiler’s stringent
safety checks, while preserving its original programming semantics.
We envision our tool can be integrated into the CI/CD process. It
will resolve safety-rule violations automatically and greatly improve
Rust’s programmability.

2.3 Program Scope

The authors of the recent research paper also develop a taxonomy
for the root causes of Rust’s safety-rule violations [66]. They cate-
gorize the violations into those caused by violating ownership rules
and those due to complex lifetime computation, since ownership
and lifetime are the two most important concepts of Rust’s safety

Owner
Lookup

Reorder

Weaken
Fixing
loop

Over K?No

Fail

Verification details

Fault
Code

Rust
In ANF

Verify

Verify

Verify

Input

Output

YesNo Semantics
Preserved?

Compiled ?

Yes

NoRevert
Patch

Code

Yes

Success

2

3

4

1

5

Error
Msg

Error MsgCode

Error MsgCode

Error MsgCode

Figure 2: Workflow of rust-lancet.

mechanism. They further separate each category into several sub-
categories. For example, ownership-rule violations are divided into
move-rule violations and borrow-rule violations.

In our work, we employ this taxonomy with a specific emphasis
on addressing ownership-rule violations, deferring the handling of
those arising from complex lifetime computation for future research.
Specifically, we resolve three types of safety-rule violations: using
an already moved object (e.g., Figure 1a, Figure 1b), borrowing an
object while it has already been mutably borrowed (e.g., Figure 1c,
Figure 1d, Figure 1e), and moving an object through a reference
(e.g., Figure 1f). Section 3.2 will provide a more comprehensive
explanation of these three error types and their formal definitions.

3 PROPOSED APPROACH

In this section, we commence by introducing the workflow of rust-
lancet, accompanied by a motivating example. Subsequently, we
delineate the three types of safety-rule violations that we aim to
address. Following that, we delve into the repair process. Finally, we
detail how we validate that a patch preserves the original semantics.

3.1 Overview

Workflow. Figure 2 shows the workflow of rust-lancet. It takes
a program with safety-rule violations as input. It either produces
a modified program that is free of violations and preserves the se-
mantics of the original program (indicated by “Success” in Figure 2),
or it reports that it cannot patch the program after several rounds
of attempts (indicated by “Failure” in Figure 2).

In summary, rust-lancet consists of five key steps (denoted
by 1○- 5○ in Figure 2). In Step 1○, rust-lancet converts the input
program into administrative normal forms (ANF) [48] to facilitate
the application of the fixing strategies. Steps 2○- 4○ correspond to
the three fixing strategies, respectively. They are executed one by
one in the main loop. After applying a strategy to modify the input
program, rust-lancet proceeds to Step 5○ to verify whether the
modified program satisfies two criteria: it preserves the original
semantics, and it passes the Rust compiler’s checks. If so, rust-
lancet identifies a patch and concludes the fixing process. If not,
rust-lancet attempts the next fixing strategy. Particularly, if the
modified program retains the original semantics, the modification

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Wenzhang Yang, Linhai Song, and Yinxing Xue

1 struct Container(Vec<bool>);

2 fn move_out(val: Container) {

3 val.0.into_iter().next();

4 val.0;

5 }

6
7

(a) A real-world code snippet.

1 struct Container(Vec<bool>);

2 fn move_out(val: Container) {

3 let mut ___tmp0 = val.0;

4 let mut ___tmp1 = ___tmp0.into_iter();

5 ___tmp1.next();

6 val.0;

7 }

(b) The code snippet in ANF.

error[E0382]: use of moved value: `val.0`

| let mut ___tmp0 = val.0 ;

| ----- value moved here

| ...

| val.0;

| ^^^^^ value used here after move

(c) Error messages of Figure 3b.

1 struct Container(Vec<bool>);

2 fn move_out(val: Container) {

3 let mut ___tmp0 = val.0;

4 let mut ___tmp1 = ___tmp0.into_iter();

5 ___tmp1.next();

6 - val.0;

7 + ___tmp0;

8 }

(d) How OL modifies Figure 3b.

error[E0382]: use of moved value: `___tmp0`
| let mut ___tmp0 = val.0;

| let mut ___tmp1 = ___tmp0.into_iter();

| ^^^^^^^^^^^^^^^^^^^^^^^

`___tmp0` moved due to ...

| ___tmp1.next();

| ___tmp0;

| ^^^^^^^ value used here after move

(e) Error message of Figure 3d.

1 struct Container(Vec<bool>);

2 fn move_out(val: Container) {

3 let mut ___tmp0 = val.0;

4 + ___tmp0;

5 let mut ___tmp1 = ___tmp0.into_iter();

6 ___tmp1.next();

7 - ___tmp0;

8 }

(f) How REO modifies Figure 3d.

error[E0382]: use of moved value: `___tmp0`
| let mut ___tmp0 = val.0;

| ----------- move occurs ...

| ___tmp0;

| ------- value moved here

| let mut ___tmp1 = ___tmp0.into_iter();

| ^^^^^^^ value used

| here after move

(g) Error message of Figure 3f.

1 struct Container(Vec<bool>);

2 fn move_out(val: Container) {

3 let mut ___tmp0 = val.0;

4 - ___tmp0;

5 + &mut ___tmp0;

6 let mut ___tmp1 = ___tmp0.into_iter();

7 ___tmp1.next();

8 }

(h) HowWKNmodifies Figure 3f.

1 struct Container(Vec<bool>);

2 fn move_out(val: Container) {

3 &mut val.0;

4 val.0.into_iter().next();

5 }

6
7
8
9

(i) The patched program.

Figure 3: How rust-lancet repairs a real-world code snippet. Figures (c), (e), and (g) show the compiler error messages of the

original program and modified programs at intermediate steps. Violations are highlighted in red in those figures.

conducted by rust-lancet according to the strategy is retained for
subsequent patching steps. Otherwise, the program is rolled back to
the version before applying the strategy. After each iteration of the
main loop, rust-lancet checks whether the iteration number is
larger than a configurable number K. If so, rust-lancet abandons
the fixing and reports that it cannot patch the input program.

The three patching strategies are Owner Lookup (OL), which
substitutes a variable whose ownership is moved with a new vari-
able that takes the moved ownership, Reordering (REO), which
swaps the order of two statements, and Weakening (WKN), which
attempts to alter the type of an operation. We will provide detailed
explanations of these three strategies in Section 3.3.
Motivating Example. Figure 3 illustrates the step-by-step process
by which rust-lancet fixes a safety-rule violation, along with the
corresponding intermediate results. Figure 3a shows the original
code snippet with the violation. The code snippet comes from the
official Rust compiler test suites. At line 3, val.0 is moved into
the function into_iter(). Consequently, the uses of val.0 at line 4
violates the safety rule that a moved value cannot be used. As shown
in Figure 3b, rust-lancet initiates the process by transforming
the input program into ANF (Step 1○ in Figure 2). Subsequently, it
employs rustc to compile the program in ANF, leading to the error
message in Figure 3c. rust-lancet performs fault location and
extracts statements that violate the safety rule based on the error
message for subsequent steps. The modification of the program
resulting from the application of OL is shown in Figure 3d (Step

2○). As demonstrated in Figure 3e, the altered program does not
successfully pass Rust’s compiler checks (Step 5○). Consequently,
rust-lancet continue the repairing process. Since the modification
carried out by OL does not alter the program’s semantics, it is
retained for the following steps. Similarly, REO also fails to patch
the program, but the modification it introduces is preserved (Step
3○). Ultimately, WKN patches the program (Step 4○). To enhance
the readability of the patch, rust-lancet transforms the modified
program in ANF in Figure 3h back to its original form in Figure 3i.

3.2 Error Categories

We categorize the compiler errors addressed by rust-lancet into
three distinct types:
Intra-scope Movement. Compiler errors falling under this cate-
gory violate the safety rule that the old owner cannot be accessed
after a move operation. Additionally, for such errors, the new owner
variable exists within the same program scope as where the old
owner is accessed. One such example is shown in Figure 1a. The
variable a declared at line 1 is the owner of the string. The owner-
ship is moved to new_a at line 2. Consequently, the use of a at line 3
violates the safety rule. Importantly, the new owner new_a is within
the same scope as the use of a at line 3.
Inter-scope Movement. Errors of this type violate the same safety
rule as the preceding category. However, in this case, the value is
moved to a distinct program scope, presenting a significant chal-
lenge for repair. For instance, consider Figure 1b, where string a

Rust-lancet: Automated Ownership-Rule-Violation Fixing with Behavior Preservation ICSE ’24, April 14–20, 2024, Lisbon, Portugal

is moved to function foo (a different scope) at line 3 within a loop.
Consequently, the use of a in the subsequent loop iteration violates
the safety rule.
Borrowing. rust-lancet fixes two types of borrow-rule violations.
The first involves having both a mutable reference and a reference
to the same object simultaneously, while the second pertains to
moving ownership through a reference. To handle the former type,
we introduce several symbolic representations, with a crucial focus
on the lifetime tuple (𝑙◦, 𝑙•) and related positional relations denoted
by = and ≺.

Definition 1 (Lifetime Tuple). A lifetime tuple signifies the
living range of a value, represented as (𝑙◦, 𝑙•). It denotes the starting
and termination locations within the control flow, where 𝑙◦ signifies
the starting location, and 𝑙• denotes the termination location.

Definition 2 (Lifetime Relation). The binary relation 𝑙◦1 ≺ 𝑙◦2
signifies that location 𝑙◦1 precedes location 𝑙◦2 within the control flow,
establishing an order between the two locations. The notation 𝑙◦1 = 𝑙◦2
indicates that the two locations 𝑙◦1 and 𝑙◦2 are the same within the
control flow.

When two references coexist, their lifetime tuples, denoted as
(𝑙◦1 , 𝑙

•
1) and (𝑙◦2 , 𝑙

•
2), exhibit one of the following three patterns:

• 𝑙◦1 ≺ 𝑙◦2 ≺ 𝑙•1 ≺ 𝑙•2 . Both the starting and termination locations of
the first lifetime tuple precede those of the second lifetime, as
illustrated in Figure 1c.

• 𝑙◦1 ≺ 𝑙◦2 , 𝑙
•
1 = 𝑙•2 . The termination locations of the two lifetime

tuples are the same. Figure 1d shows one such example, where
both the lifetimes of p1 and p2 end at line 4.

• 𝑙◦1 ≺ 𝑙◦2 , 𝑙
•
2 ≺ 𝑙•1 . The lifetime scope of the first reference en-

compasses the lifetime scope of the second reference. Figure 1e
provides an example of this pattern, where the lifetime scope
of p1 covers that of p2. As p1 is a mutable reference, the Rust
compiler generates a compilation error, indicating that a mutable
reference is not allowed to coexist with another reference to the
same object. Nevertheless, Rust provides a reborrowing mecha-
nism [7] to afford programmers more flexibility. By utilizing this
mechanism, the compilation error of Figure 1e can be resolved
by replacing line 2 with “let p2 = &*(p1);”.

Errors arising from moving a value through a reference can man-
ifest in any location where a reference is dereferenced. These errors
become more challenging to comprehend when the dereference
operation occurs implicitly. For instance, in Figure 1f, hellothere.x
is a reference used as the condition of a match expression at line 2.
Notably, the ref keyword is absent in the pattern of the arm at line
3. Consequently, the reference is dereferenced implicitly, and the
value is moved to box E::Bar(x), resulting in a violation of the rule
that prohibits moving a value through a reference.

3.3 Fixing Loop

As depicted in Figure 2, rust-lancet iterates through the fixing
loop until it either discovers a patch or reaches a pre-configured
threshold K for loop iterations. In each iteration, rust-lancet
applies the three fixing strategies one by one. For each strategy,
rust-lancet analyzes the error message generated by rustc to
pinpoint the AST nodes violating the safety rule. Subsequently, it

Table 1: How fixing strategies and behavior preservation

instrumentation modify the input program. (BP is short for

behavior preservation, and𝜔 (𝑒𝑥𝑝) is an operation weaker than

exp.)

ID Patch BP Instrumentation

OL

let foo = exp; let foo = exp;

... ...

− let bar = exp; + assert(exp == foo);

+ let bar = foo; let bar = exp;

REO

+ let c1 = exp2;

+ let foo = exp2; let bar = exp1;

let bar = exp1; ... // no I/O stmts

... // no I/O stmts + let c2 = exp2;

− let foo = exp2; + assert(c1 == c2);

let foo = exp2;

WKN

− let foo = exp;
Clone Checking

+ let foo = 𝜔(exp);

modifies the program in accordance with the strategy. Applying
a strategy is one single attempt to patch the program. If its code
modification maintains the original semantics, it is preserved for
subsequent steps. A complex error may involve the application of
multiple strategies, as illustrated by the error in Figure 3.
Fault Localization.When compiling a file, if the additional compi-
lation parameter "--error-format=json" is provided to rustc, rustc
generates a JSON file containing all error messages encountered
during compilation. rust-lancet analyzes the JSON file for fault
location. Each object in the file corresponds to a compiler error.
The code field of an object represents the code of the violated rule.
One label field of an object corresponds to one source-code line
involved in the error. It also describes why the line is involved.
Each label has a line_start field denoting the line number of the
source-code line. We use the line-number information to locate the
faulty AST nodes. Although this approach may not be perfect, our
experience demonstrates its accuracy is sufficient for constructing
rust-lancet.

For example, the JSON file for Figure 3c contains only one object,
as there is only one compiler error. There are two source-code lines
involved: one represents where val.0 is moved (line 3 in Figure 3b),
and the other represents where val.0 is used after the move (line
6 in Figure 3b). Thus, the object contains two label fields for the
two lines, and the line_start fields of the two label fields are 3 and
6, respectively.
Owner Lookup (OL). This strategy aims to resolve errors caused
by intra-scope movement. As the new owner is in the same scope
as the use of the old owner, the strategy replaces the use of the old
owner with the use of the new owner. Specifically, rust-lancet
checks if the input compiler error is “use of moved value”. If not,
rust-lancet stops applying the strategy and does not modify the
input program. Otherwise, rust-lancet further extracts the ex-
pression accessing the old owner (e.g., “let bar = exp” in Table 1).
Since the input program has already been converted to ANF, the

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Wenzhang Yang, Linhai Song, and Yinxing Xue

Table 2: How different operations change the numbers of

values and entities. (An entity could be an owner or a reference,

and “/”: not applicable.)

Value

Entity −1 −0 +1

−1 move / /
−0 / & mut &
+1 / / clone

expression cannot be a chain call (e.g., line 3 in Figure 3a). rust-
lancet examines whether the expression falls into one of the fol-
lowing four types: accessing a variable1, accessing an object’s field,
dereferencing a reference, and conducting the “?” operation. If not,
rust-lancet gives up this strategy. Otherwise, rust-lancet iden-
tifies the new owner by analyzing the assignments preceding the
use (e.g., “let foo = exp” in Table 1) and replaces the use of the old
owner with the new owner.

For instance, in Figure 3c, rust-lancet identifies val.0 at line
6 in Figure 3b as the expression using the moved value. It then
recognizes the new owner as __tmp declared at line 3 in Figure 3b.
Consequently, it substitutes val.0 at line 6 with __tmp, as depicted
in Figure 3d.
Reordering (REO). As illustrated in Table 1, the REO strategy
initially identifies a pair of instructions that violate a safety rule.
Subsequently, it repositions the latter instruction immediately be-
fore the former instruction. The rationale behind REO is to poten-
tially relocate the instruction that uses a moved value before the
move operation. Additionally, it is likely to move the final use of a
reference ahead of the declaration of another reference to the same
object, effectively eliminating the overlap in the lifetimes of the two
references, since Rust’s NLL mechanism terminates the lifetime of
a reference at its last use, such as changing 𝑙◦1 ≺ 𝑙◦2 ≺ 𝑙•1 ≺ 𝑙•2 to
𝑙◦1 ≺ 𝑙•1 ≺ 𝑙◦2 ≺ 𝑙•2 .

To determine the two instructions for reordering in an input
program, REO examines the JSON file containing error messages
generated by rustc during compilation. If the object corresponding
to a compiler error has only one label field, REO refrains from
patching the error, as there is only one instruction involved. In all
other cases, REO depends on a set of heuristic rules to decide which
two label fields should be considered. These rules take into account
their descriptions, explaining why they are involved, and the type
of the compiler error.

Prior to relocating an instruction, REO conducts an additional
check for any I/O operations (e.g., println!) between the new and
old locations. If such operations exist, the movement could poten-
tially affect the side effects of the I/O operations. As a result, REO
conservatively abandons the patching process.

For example, REO identifies the instructions at lines 4 and 7
in Figure 3d for reordering through an analysis of the error mes-
sage presented in Figure 3e. It relocates line 7 just before line 4 in
Figure 3d, as depicted by the patch in Figure 3f.
Lattice-based Weaken (WKN). Rust provides multiple types of
operations to modify entities (e.g., owner, reference) through which

1The access may be performed through a plain path if the variable is in a different
module

⟨𝑐𝑙𝑜𝑛𝑒, 𝑐𝑙𝑜𝑛𝑒⟩

⟨𝑐𝑙𝑜𝑛𝑒,&⟩ ⟨&, 𝑐𝑙𝑜𝑛𝑒⟩

⟨𝑐𝑙𝑜𝑛𝑒,&𝑚𝑢𝑡⟩ ⟨&,&⟩ ⟨&𝑚𝑢𝑡, 𝑐𝑙𝑜𝑛𝑒⟩

⟨𝑐𝑙𝑜𝑛𝑒,𝑚𝑜𝑣𝑒⟩ ⟨&,&𝑚𝑢𝑡⟩ ⟨&𝑚𝑢𝑡,&⟩ ⟨𝑚𝑜𝑣𝑒, 𝑐𝑙𝑜𝑛𝑒⟩

⟨&,𝑚𝑜𝑣𝑒⟩ ⟨&𝑚𝑢𝑡,&𝑚𝑢𝑡⟩ ⟨𝑚𝑜𝑣𝑒,&⟩

⟨&𝑚𝑢𝑡,𝑚𝑜𝑣𝑒⟩ ⟨𝑚𝑜𝑣𝑒,&𝑚𝑢𝑡⟩

⟨𝑚𝑜𝑣𝑒,𝑚𝑜𝑣𝑒⟩

Figure 4: The lattice for two operations.

a value is accessed. Some of these operations are more prone to
violating safety rules than others, and we consider these to have a
stronger capability. The WKN strategy transforms operations with
stronger capabilities into those with weaker capabilities, thereby
reducing the risk of safety rule violations. Specifically, we consider
four types of operations: move, mutable borrow, immutable borrow,
and clone. As shown in Table 2, we define their capabilities based
on two aspects. The first aspect is whether an operation creates
one more entity to access a value. The second aspect is whether
an operation creates one more value. A move operation can move
a value to a different scope, reducing the number of entities and
values of the current scope by one. Furthermore, neither a mutable
borrow nor an immutable borrow creates a new value. However, a
mutable borrow exclusively borrows the value, thus not increasing
the number of entities to access the value, while multiple immutable
references are allowed in Rust, and an immutable borrow creates
onemore immutable reference. In contrast, cloning an object creates
one more value and also an owner of the new value. In summary,
the total order of the four types of operations is determined as:
𝑐𝑙𝑜𝑛𝑒 ⊂ & ⊂ &𝑚𝑢𝑡 ⊂ 𝑚𝑜𝑣𝑒 .

At times, operations that modify entities are implicitly carried
out through standard library calls. We notice a pattern in the stan-
dard library where functions with a similar functionality but differ-
ent ways of accessing one of their parameters are named as follows:
{fn} moves the parameter, {fn}_mut mutably borrows the parameter,
and {fn}_ref immutably borrows the parameter. Therefore, we can
establish the order of these functions by analyzing their names.

Given a compiler error, WKN first identifies the operations con-
tributing to the violation by examining the label fields. Subse-
quently, WKN constructs a lattice where the number of fields in
each lattice element corresponds to the number of involved opera-
tions. For instance, the lattice for cases involving two operations is
depicted in Figure 4. WKN locates the lattice element correspond-
ing to the operations causing the error and then weakens their
capabilities by traversing the lattice from top to bottom and from
left to right. After weakening operations based on a lattice element,
WKN verifies whether the semantics are preserved and whether the
modified program remains free of compiler errors. If either of these
conditions is not met, WKN proceeds to the next lattice element. If
the semantics are unchanged, the code modification is retained.

For instance, rust-lancet identifies the two operations causing
the compiler error in Figure 3g as “__tmp0” and “__tmp0.into_iter()”.

Rust-lancet: Automated Ownership-Rule-Violation Fixing with Behavior Preservation ICSE ’24, April 14–20, 2024, Lisbon, Portugal

𝑙𝑜𝑐 (𝑆, 𝑣) = ℓ𝑣

𝑆 ▷ 𝑜 −→ 𝑆 ▷ ℓ𝑤

(a) Move

𝑆2 = 𝑤𝑟𝑖𝑡𝑒 (𝑆1, 𝑜1, 𝑜2)
𝑆1 ▷ 𝑜1 = 𝑜2 −→ 𝑆2 ▷ 𝜖

(b) Assignment

Figure 5: Themove and assignment reduction rules inmental

semantics. (𝑆 : the memory state before and after an operation

if the operation does not alter the state; 𝑆1 and 𝑆2: the memory

state before and after an operation; 𝑜 , 𝑜1, and 𝑜2: the owners of
values 𝑣 , 𝑣1, and 𝑣2.)

Both are move operations. According to the lattice in Figure 4, rust-
lancet transforms the first move into a mutable borrow, as shown
in Figure 3h.

3.4 Behavior Preservation

Fixing a compiler error in Rust doesn’t simply end with passing the
compiler’s checks. To ensure that the modified program behaves
the same as the original, a comparison of their behaviors is essential.
However, this task is significantly challenging as the Rust compiler
cannot compile the original program, preventing us from generating
an executable and comparing its behavior with that of the modified
program.

This section addresses the challenge through three steps. First,
we define mental semantics to capture the intentions of program-
mers when writing Rust code. Second, we instrument assertions
and some other related code into the original programs based on the
applied fixing strategy. The conditions of these assertions ensure
that the program semantics remain unchanged after the strategy
is applied. Lastly, we perform a specialized symbolic execution by
referencing the mental semantics to verify whether the inserted
assertions are satisfied across all potential program executions. If
successful, the program semantics are preserved.

3.4.1 Mental Semantics. We introduce mental semantics to rep-
resent the behaviors of Rust programs with compiler errors. The
mental semantics avoid dropping any values, permit one value to
have multiple owners, and allow multiple mutable references to the
same object to coexist. Our rationale is that if Rust did not enforce
these rules, programs with compiler errors could be compiled, run,
and exhibit the behaviors desired by programmers.

We employ symbols and helper functions from [46] to formally
define mental semantics. Due to space constraints, we refrain from
presenting the complete set of reduction rules in this paper2. Fig-
ure 5 illustrates two rule examples. Figure 5a demonstrates that
when the ownership of 𝑣 is moved from 𝑜 , 𝑜 still holds the owner-
ship. To achieve this, after the move, the memory location of 𝑜 still
retains the address of 𝑣 , allowing all accesses to 𝑣 to be performed
through 𝑜 . Figure 5b shows that when 𝑜2 is moved to 𝑜1, we do not
drop the value owned by 𝑜1 before the move. All references to 𝑜1
before the move still point to the old value 𝑣1.

3.4.2 BP Instrumentation. As shown by Table 1, we devise different
instrumentation methods for different fixing strategies.

The OL strategy involves replacing the old owner with the new
owner. Therefore, an assertion is instrumented before the code line

2All reduction rules can be found at our project website [5].

1 struct C(Vec<bool>);

2 fn move_out(val: C) {

3 // 𝜎 = {val -> C(vec)}

4 let mut ___tmp0 = val.0;

5 // 𝜎 = {val -> C(vec), ___tmp0 -> vec}

6 + let c1 = ___tmp0;

7 // 𝜎 = {val -> C(vec), ___tmp0 -> vec, c1 -> vec}

8 let mut ___tmp1 = ___tmp0.into_iter();

9 // 𝜎 = {val -> C(vec), ___tmp0 -> vec, c1 -> vec,

10 // ___tmp1 -> into_iter(vec)}

11 ___tmp1.next();

12 // 𝜎 = {val -> C(vec), ___tmp0 -> vec, c1 -> vec,

13 // ___tmp1 -> into_iter(vec)}

14 + let c2 = ___tmp0;

15 // 𝜎 = {val -> C(vec), ___tmp0 -> vec, c1 -> vec,

16 // ___tmp1 -> into_iter(vec), c2 -> vec}

17 + assert(c1 == c2);

18 // true

19 }

Figure 6: BP instrumentation for Figure 3d and the symbolic

execution results. (“+” denotes lines instrumented to validate

behavior preservation, and comments following a code line

show the symbolic execution results after executing the line.)

where the replacement is performed to ensure that the value of the
new owner is equal to the old owner.

REO relocates an instruction from its current location to a pre-
ceding one. Since there is no use of the instruction’s value between
the current location and the preceding location, we insert an as-
sertion immediately after the current location, which ensures that
the evaluation result of the instruction at the preceding location
is equal to the evaluation result at its current location. (e.g., lines
marked by “+” in Figure 6)

Since WKN patches changes entities to access values, they typ-
ically do not alter program behaviors according to the mental se-
mantics, except in cases where object cloning occurs. When an
object is cloned, subsequent accesses to the cloned version and the
original object now target different objects. The original program
behaviors are preserved only when the values of the two objects
are the same. To validate this, we adopt a conservative approach
by examining whether there is any update to the cloned version or
the original version after the clone operation. If such updates exist,
we consider the patch to modify the original program semantics.

3.4.3 Validation. We conduct partial symbolic execution to verify
whether the instrumented assertion holds true for an OL or REO
patch. The symbolic execution initiates from the function’s entry
point where the patch is applied and halts at the insertion point of
the assertion. All values defined outside the function are treated as
symbolic variables, and the execution states are updated according
to the mental semantics after each instruction is executed. If the
instrumented assertion proves true for all execution paths, we can
affirm that the patch maintains the original program semantics.

Figure 6 shows an example. The initial state of symbolic execu-
tion is “𝜎 = val -> C(vec)” at line 3. The execution state is updated
by referring to the mental semantics. For example, line 6 moves
the ownership of ___tmp0 to c1, but ___tmp0 can still be used to access
vec, since mental semantics allows for multiple owners. Similarly,
c2 also becomes the owner of vec after line 14. Thus, “c1==c2” is true

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Wenzhang Yang, Linhai Song, and Yinxing Xue

at line 17, affirming that the REO patch preserves the program’s
behaviors.

4 EVALUATION

We implement rust-lancet using rustc version 1.67.0-nightly.
rust-lancet takes a Rust source code file with a compiler error as
input and outputs the patch for the error or reports that it cannot
fix the error. rust-lancet performs its analysis and code transfor-
mation on the Abstract Syntax Tree (AST) of the file. To achieve
this, it utilizes the syn crate [3] and the quote crate [2] to convert
a stream of Rust source-code tokens into an AST and dump an
AST into source code. Our experiments are designed primarily to
address the following four questions:

• Effectiveness: How effective is rust-lancet in fixing Rust’s
safety-rule violations?

• Necessity: How does each component of rust-lancet con-
tribute to its capability?

• Advancement: Is rust-lancet better than state-of-the-art tech-
niques?

• Comparison with Experts: How does rust-lancet perform
compared with Rust experts?

We conduct all of our experiments on a MacBook Pro machine
equipped with a 2GHz Quad-Core Intel Core i5 CPU, 16GB RAM
and kernel version macOS 13.1.

4.1 Experimental Settings

Benchmarks. We collect a total of 160 safety-rule violations from
two sources. First, we select 36 testing files with ownership-rule
violations from the official test suite of rustc (RustcTS) [9]. Since
one file may contain multiple violations, there are a total of 111
violations from these files. To simplify our experiments, we split
each testing file into multiple files to ensure that each split file
only contains one violation. Second, we choose 49 violations from
the dataset constructed by Zhu et al. [66]. These violations are
in distinct source-code files. Among them, 42 are ownership-rule
violations, and they are within the problem scope of rust-lancet
(Zhu). The remaining seven are intentionally picked to explore
how rust-lancet behaves when handling compiler errors beyond
its problem scope (OoS). Among them, four are caused by type
mismatches, two stem from mutating an immutable variable, and
one is caused by a missed type name.
Techniques. As shown by Table 3, we set the maximum iteration
number of rust-lancet’s fixing loop (denoted as “K” in Figure 2) to
one and four, and evaluate rust-lancet under these two settings.

We choose seven baseline techniques. One of them is the Rust
compiler (rustc), since it sometimes offers direct suggestions for
modifying the program to pass compiler checks. The remaining six
techniques are developed by harnessing the capabilities of large
language models (LLMs) provided OpenAI [6]. Those techniques
vary in three aspects. First, three of them utilize the gpt-3.5 model,
while the other three employ the gpt-4 model. Second, for four
techniques, we use scripts to automatically extract modified code
suggested by the LLM from each LLM response, test whether the
code still contains any compiler error, and request the LLM to fix
again if necessary (marked by “K” in Table 3). For the other, we

Table 3: Experimental Results. (K: automated techniques, H:

techniques need human involvement, and the number follow-

ing K indicates the maximum number of attempts.)

RustcTS (111) Zhu (42)

TP FP TP FP

rustc 40 (36.0%) 8 (7.2%) 5 (11.9%) 7 (16.7%)
gpt-3.5-K1 26 (23.4%) 85 (76.6%) 12 (28.6%) 30 (71.4%)
gpt-3.5-K4 40 (36.0%) 71 (64.0%) 17 (40.5%) 25 (59.5%)
gpt-3.5-H 45 (40.5%) 66 (59.5%) 16 (38.1%) 26 (61.9%)
gpt-4-K1 42 (37.8%) 69 (62.2%) 17 (40.5%) 25 (59.5%)
gpt-4-K4 51 (45.9%) 60 (54.1%) 22 (52.4%) 20 (47.6%)
gpt-4-H 61 (55.0%) 50 (45.0%) 23 (54.8%) 19 (45.2%)

rust-lancet-K1 76 (68.5%) 0 (0%) 13 (31.0%) 0 (0%)
rust-lancet-K4 89 (80.2%) 0 (0%) 13 (31.0%) 0 (0%)

manually read the response and follow the response to modify
the code (marked by “H” in Table 3). Third, among the automated
techniques, we further distinguish them based on the number of
fixing attempts. Two techniques attempt only once (“K1” in Table 3),
while the other two attempt four times (“K4” in Table 3). For all the
techniques relying on LLMs, we set the “temperature” parameter to
0.5 to regulate the randomness of the LLMs. We employ a consistent
prompt template, as illustrated below. For each request instantiation,
the placeholders src and err in the template are substituted with
the specific Rust code and the compiler error, respectively.

Try to fix my rust compilation error with behavior

preservation, and give me a completely fixed version.

Don't explain the code, just generate the rust code block itself.

[[The code in your answer is still uncompilable.]

Here is the code: {src}

Here is the compilation error message: {err}]*

Metrics. We follow a two-step process to assess whether a rule
violation is fixed. At the beginning, we employ rustc to compile the
modified Rust file and check whether it does not have any compiler
error. If so, we proceed to the subsequent step. In the second phase,
a Rust expert meticulously reviews the modified file to confirm its
adherence to the original semantics. The Rust expert makes the
decision entirely on his expertise in Rust, without consulting any
techniques described in Section 3. When a technique successfully
corrects a violation, we count a true positive (TP) for the technique.
If a technique generates a wrong patch (either rejected by the
compiler or losing the original semantics), we count a false positive
(FP) for the technique.

To quantify the size of a patch, we begin by formatting both the
original and modified source code using the command-line tool
rustfmt [8]. Subsequently, we use the command-line tool diff [4] to
determine the number of modified code lines with bash command
“diff -y -- suppress-common-lines foo.rs bar.rs | wc -l.”

To assess the execution time of a tool, we execute the tool ten
times and report the average execution time.

4.2 Experimental Results

4.2.1 Effectiveness. As indicated in Table 3, when the maximum
iteration number of the fixing loop is set to four (rust-lancet-K4),
rust-lancet successfully addresses 89 out of 111 violations (80.2%)
in RustcTS and 13 out of 42 violations in Zhu (31.0%). Notably,
rust-lancet does not produce any false positives while patching

Rust-lancet: Automated Ownership-Rule-Violation Fixing with Behavior Preservation ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 4: Component contributions of rust-lancet-K4. (RL is

short for rust-lancet-K4, w/o is short for without, 𝑥𝑦 denotes

𝑥 fixed violations and 𝑦 false positives, and “-” represents both

fixed violations and false positives are zero.)

w/o OL w/o REO w/o WKN w/o BP RL

RustcTS 860 460 590 890 890
Zhu 110 100 80 132 130
OoS - - - - -
Total 970 560 670 1022 1020

violations in the two datasets, showcasing its accuracy. When rust-
lancet executes the fixing loop only once (rust-lancet-K1), the
number of patched violations decreases to 76 for RustcTS, affirming
that increasing the iteration number of the fixing loop enhances
rust-lancet’s fixing capability. The number of patched violations
remains unchanged for Zhu. Similarly, rust-lancet-K1 does not
report any false positives.

While scrutinizing the seven bugs in OoS, rust-lancet does
not discover any patches upon reaching the configured maximum
iteration number of the fixing loop. Despite being unable to ad-
dress violations beyond its problem scope, rust-lancet does not
generate incorrect patches when analyzing these violations.
Patch Size.Out of the 102 violations addressed by rust-lancet-K4,
the average patch size is 2.25 lines of code (LOC). It is widely recog-
nized that smaller patches are easier for programmers to review and
are more likely to be accepted. Consequently, the patches generated
by rust-lancet are likely to meet acceptance from programmers.
Execution Time.With rust-lancet-K1, the analysis of the 160 vi-
olations of the three datasets takes 365.74 seconds. On average,
rust-lancet-K1 spends 2.28 seconds analyzing each violation.
When increasing the maximum fixing-loop iteration number to
four, the overall analysis time rises to 850.45 seconds, and the aver-
age analysis time per violation increases to 5.31 seconds. Among all
the components, WKN is the most time-consuming as it attempts
all cells in the constructed lattice. The worst-case complexity is
𝑂 (𝑁𝑛), where 𝑁 denotes the number of operation types3, and 𝑛
represents the number of operations involved in a compiler error.
For all errors in our experiments, 𝑛 is less than 5.

Answer to Effectiveness: rust-lancet successfully patches
the majority of rule violations when the maximum fixing loop
iteration is set to four. Additionally, the generated patches are
small, increasing the likelihood of acceptance by programmers.
The efficient execution time of rust-lancetmakes it a viable
candidate for integration into the CI/CD process.

4.2.2 Necessity. To discern the contribution of each component in
rust-lancet — namely, OL, REO, WKN, and BP validation — we
run rust-lancet-K4 on all three datasets with each component
disabled individually. The experimental results are shown in Table 4.
Fixing Strategies. In terms of overall effectiveness, REO stands
out as the most impactful fixing strategy. Its absence results in a
significant reduction in rust-lancet-K4’s fixing capability, with
only 56 violations addressed, leaving 46 unpatched compared to the
complete version of rust-lancet-K4. Conversely, OL emerges as
3𝑁 is four for our current implementation

1 let mut a = Vec::new();

2 + println!("{:?}", a);

3 let mut foo = Foo::new(move |v| {

4 for i in v { a.push(i);}});

5 foo.fun(1);

6 - println!("{:?}", a);

Figure 7: A patch example rejected by BP validation.

the least effective fixing strategy. When disabled, rust-lancet-K4
addresses only five fewer violations. WKN demonstrates effective-
ness on the Zhu dataset. When deactivated, rust-lancet-K4 misses
five violations, the highest number among all three strategies.
BP Validation. If behavior preservation validation is disabled,
rust-lancet still fixes the same number of bugs but introduces
two incorrect patches (i.e., false positives). These two false positives,
when BP validation is activated, would be rejected by symbolic
execution and clone checking, respectively. Figure 7 illustrates one
such example. The compiler error arises from using the vector a

at line 6 after a is moved to the closure at line 4. To resolve this
error, REO attempts to relocate line 6 to line 2 to ensure the use of
a precedes the move. However, the closure is invoked at line 5, and
a number is pushed into a. The vector a at line 6 contains one more
element than a at line 2. Symbolic execution can precisely capture
this distinction and reject the patch.

The programs used in our evaluation are relatively simple, pri-
marily involving operations such asmoving, borrowing, and cloning
values, with infrequent value updates. Consequently, we believe the
importance of the BP validation component is undervalued, given
that the patches generated by the three strategies are unlikely
to alter the original semantics. However, in real-world scenarios,
programs are more prone to modifying values [23], and thus BP
validation will be more impactful.

Answer to Necessity: Each fixing strategy contributes to en-
hancing the patching capability of rust-lancet. Among them,
REO stands out as the most effective. Additionally, behavior
preservation validation proves to be successful in effectively
eliminating false positives.

4.2.3 Advancement. As shown by Table 3, both rust-lancet-K1
and rust-lancet-K4 successfully patch more violations than the
baseline techniques on RustcTS, whereas gpt-4-H proves to be the
most effective technique on Zhu.When considering the two datasets
together, rust-lancet-K4 fixes the highest number of violations —
102 in total. This is 18 more than the best baseline technique, gpt-4-
H. Furthermore, all baseline techniques exhibit false positives, with
the count reaching as high as 115 for gpt-3.5-K1 (85 from RustcTS
and 30 from Zhu). In contrast, neither rust-lancet-K1 nor rust-
lancet-K4 generates any false positives. Overall, rust-lancet
outperforms the baseline techniques in both fixing capability and
fixing accuracy.

Figure 8 illustrates a compiler error that can only be fixed by
rust-lancet. Two mutable references, a and b, are created at lines
2 and 3, both mutably borrowing x.0. Additionally, a is used at line

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Wenzhang Yang, Linhai Song, and Yinxing Xue

1 let mut x = (1, 2);

2 let a = &mut x.0;

3 - let b = &mut x.0;

4 + let _b = &mut x.1; GPT-3.5

5 a.use_ref();

6 + let b = &mut x.0; Rust-lancet

7 + a.use_mut(); GPT-4

Figure 8: The patches for RustcTS-298. Figure 9: Violation coverage.

1 struct Foo<A> { f: A }

2 fn touch<A>(_a: &A) {}

3 let x = "hi".to_string();

4 - let _y = Foo { f:x };

5 + let _y = Foo { f:x.clone() }; Expert

6 touch(&x);

7 + let _y = Foo { f:x }; Rust-lancet

Figure 10: The patches for RustcTS-246.

5, extending its lifetime from line 2 to line 5. Consequently, the two
mutable references to x.0 coexist at line 3, triggering the compiler
error. To address the error, all techniques delete code line 3, but they
add different code lines. gpt-3.5-H adds line 4, where a different
value (x.1) is mutably borrowed. Although this patches the compiler
error, it alters the program semantics. gpt-4-H inserts a method call
at line 7, but does not create b anymore. It also changes the program
semantics. In contrast, rust-lancet relocates the declaration of b
after the use of a. After this relocation, the lifetime of a no longer
overlaps with that of b, effectively patching the violation and also
preserving the semantics.

gpt-4 fixesmore violations than rust-lancet on the Zhu dataset.
Specifically, gpt-4-H fixes 10 more violations than rust-lancet-
K4. We attribute this to two factors. First, all violations in Zhu
originate from Stack Overflow questions posted before September
2021, potentially contributing to the training data for gpt-4. Second,
gpt-4 has internet access, and it is plausible that it retrieves Stack
Overflow information when responding to our requests. To confirm
our hypothesis, we examine the original Stack Overflow web pages
corresponding to the 23 violations successfully patched by gpt-4-H.
Among them, ten web pages contain the patched code, and the
patched code precisely matches the patches generated by gpt-4-H.
Additionally, for one violation, although the Stack Overflow page
does not provide the patch, it described the main idea to fix the
violation in plain text, and this description precisely aligns with
the patch generated by gpt-4-H.
Violation coverage. Figure 9 illustrates the violation coverage
when rust-lancet-K4, rustc, gpt-3.5-H, and gpt-4-H analyze the
three datasets (RustcTS, Zhu, and OoS). There are 37 violations
that can only be patched by rust-lancet-K4, demonstrating that
rust-lancet complements the baseline techniques.

Answer toAdvancement: rust-lancet successfully patches
the highest number of violations among all evaluated tech-
niques, and there is a substantial number of violations that
can only be addressed by rust-lancet. Thus, rust-lancet
represents an advancement in the state-of-the-art for compiler-
error fixing techniques for Rust.

4.2.4 Comparison with Rust Experts. We conduct a user study to
compare patches written by Rust experts with those generated by
rust-lancet.
Study Setup. We recruit study participants from two Rust-specific
forums, requiring them to be at least 18 years old and have a mini-
mum of two years of experience in Rust programming. We conduct

interviews to verify their background and Rust expertise and ul-
timately recruit three senior software engineers. We compensate
each participant with 500 RMB.

During the study, each participant is assigned the task of fixing
all 160 compiler errors in the three datasets. We explicitly specify
the use of rustc as the exclusive tool, prohibiting participants from
utilizing other tools or referencing external resources. Participants
are permitted to make multiple attempts for each compiler error,
and we measure the time taken by each participant on an error
from the moment they open the code file until they believe they
have successfully fixed the error or decide to abandon the attempt.
Overall Results. As shown in Table 5, the three experts success-
fully fix 143, 153, and 102 compiler errors, respectively, with only
two of them patching more errors than rust-lancet-K4. The re-
maining expert fixes the same number of violations as rust-lancet-
K4. Additionally, on average, each expert spends 22,495 seconds
analyzing all compiler errors, which is 25 times more than the time
expended by rust-lancet-K4. rust-lancet demonstrates a fixing
capability comparable to Rust experts and proves to be faster in
analyzing errors and generating patches.
Patch Size. As shown by Table 5, the average sizes of the patches
created by the three experts are 2.20, 2.33, and 2.13, respectively.
These sizes are comparable to the average size of the patches gener-
ated by rust-lancet-K4. Moreover, sizes one and two are the most
common patch sizes for the three experts and rust-lancet-K4.
The size of a patch usually represents the readability of the patch.
Thus, the readability of the patches created by rust-lancet-K4 is
comparable to those created by Rust experts.

At times, despite rust-lancet-K4 generating a patch with a
larger size than the patch created by a Rust expert for the same
error, rust-lancet-K4’s patch is better. An example of this is shown
in Figure 10. In this case, string x is moved to struct _y at line 4.
Consequently, the borrowing of x at line 6 is a use of x after the
move. To fix the error, all the three Rust experts replace the move
operation with a clone operation. The diff tool interprets this as a
modification to a single source-code line, resulting in a patch size
of one. On the other hand, rust-lancet-K4 relocates line 4 just
after line 6, ensuring that the use precedes the move. The diff tool
then considers the patch size to be two. Despite the larger size of
rust-lancet-K4’s patch, we consider it better as it avoids the need
for an additional clone operation.

Rust-lancet: Automated Ownership-Rule-Violation Fixing with Behavior Preservation ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 5: Patch size distribution.

Patch Size
Sum Average

1 2 3 4 >4

Expert#1 55 54 15 8 11 143 2.20
Expert#2 50 69 12 9 13 153 2.33
Expert#3 58 21 10 5 8 102 2.13

rust-lancet-K4 26 64 5 1 6 102 2.25

Answer to Comparison with Experts: rust-lancet
patches a comparable number of violations with similar patch
sizes as Rust experts, but it is 25 times faster than the Rust
experts.

5 DISCUSSION

Limitations. rust-lancet focuses on addressing violations of
ownership-related rules. Another fundamental aspect of Rust’s
safety mechanism is lifetime, and numerous Rust compiler errors
arise from breaching lifetime rules [66]. We defer the augmentation
of rust-lancet to patch such errors for future work.

We fail to evaluate rust-lancet on real Rust projects for two
reasons. First, extracting compiler errors from the commit histories
of open-source Rust projects is difficult since developers typically
ensure their commits can be compiled before merging them to the
projects. Second, injecting errors into real Rust projects raises con-
cerns about whether the errors injected by us can represent those
made by real Rust programmers. Nevertheless, we are confident that
rust-lancet can effectively work on large, real Rust projects. This
confidence is grounded in the fact that both rust-lancet’s patch-
ing strategies and behavior preservation validation are designed to
operate within small program scopes (e.g., a single function). None
of them requires analyzing the entire input program, eliminating
any scalability issues.
Threats to Validity. For symbolic execution in Section 3.4.3, we
implement only a subset of Rust language features. Consequently,
there is a risk that rust-lancet may incorrectly validate a patch’s
preservation of the program’s original semantics, affecting internal
validity. In our experiments, wemanually review the responses from
gpt-3.5 and gpt-4. The assessment is subjective, and our decisions
may be influenced by our expertise, posing a potential impact on
external validity.

6 RELATEDWORK

AutomatedProgramRepair (APR). In recent years, manymethod-
ologies for Automated ProgramRepair (APR) have emerged, broadly
falling into non-learning-based and learning-based categories.

In non-learning-based APR, approaches vary from manual tem-
plates [26, 44] to automatic pattern mining [18, 29, 35]. TBar [36], a
state-of-the-art method, consolidates 35 fix templates, outperform-
ing counterparts. Semantic-based techniques like CSNIPPEX [53]
and HoBuFF [38] offer solutions for import declarations and per-
form build fixing using dataflow analysis, respectively. Hetero-
Gen [64], HireBuild [21], and RULF [24] address compilation errors.
HeteroGen uses pattern-oriented edits, HireBuild calculates log
similarity, and RULF, a Rust library fuzzer, circumvents ownership-
rule violations by adding tags. In learning-based APR, techniques

such as MACER and TEGCER [14, 17] classify compilation errors or
compute the similarity with associated patches. Rete [45] addresses
the challenge of learning program namespaces, and TENURE [40]
combines template-based and Neural Machine Translation (NMT)
methods, representing a significant evolution in APR methodolo-
gies. Jiang et al. [25] compare code language models, while Tare [65]
proposes a type-aware neural program repair. TransRepair [34] uses
program context and error messages for repair.
Patch Correctness. Testing-driven patch correction, ensuring be-
havior correction by passing all tests [26], has overfitting limita-
tions [31] and could cause more serious harm [51] than original
fixed bugs. After that, researchers focus on patch precision [35, 39,
55]. Techniques ensure semantic equivalence, such as Alive2 [37]
encoding LLVM IR Semantics in SMT to verify the correctness of
optimizations. Invalidator [32] uses semantic and syntactic reason-
ing via program invariants to automatically assess the correctness
of the patch. Verifix [12] aligns the incorrect program and the ref-
erence program, then performs MaxSMT to find a minimal repair
with behavioral equivalence. Relational Hoare logic [42], a variant
of Hoare logic, verifies the equivalence between programs. These
approaches contribute to robust patch correctness validation.

7 CONCLUSION

In this paper, we introduce rust-lancet, an automated technique
designed to patch ownership-rule violations in Rust programs. To
construct rust-lancet, we design three effective fixing strategies
and an approach to assess whether a patch maintains the program’s
original semantics. We evaluate rust-lancet with 160 violations.
The experimental results show that rust-lancet can effectively
patch ownership-rule violations with small patch sizes and short
analysis time, and rust-lancet outperforms rustc and other LLM-
based baseline techniques in terms of patching capability and accu-
racy. In the future, we plan to extend rust-lancet to patch other
types of Rust compiler errors.

8 ACKNOWLEDGMENT

Wenzhang Yang and Yinxing Xue were supported by Chinese Na-
tional Natural Science Foundation (Grant#: 61972373) and CAS
Pioneer Hundred Talents Program. Linhai Song was supported by
NSF grants CNS-1955965 and CCF-2145394.

REFERENCES

[1] 2023. announcing-windows-11-insider-preview-build-25905. https:
//blogs.windows.com/windows-insider/2023/07/12/announcing-windows-11-
insider-preview-build-25905/ Accessed: 2023-07-21.

[2] 2023. The crate quote. https://crates.io/crates/quote Accessed: 2023-03-26.
[3] 2023. The crate syn. https://crates.io/crates/syn Accessed: 2023-03-26.
[4] 2023. diff. https://www.gnu.org/software/diffutils/ Accessed: 2023-03-26.
[5] 2023. Mental Semantic Details. https://sites.google.com/view/rust-lancet/index

Accessed: 2023-07-31.
[6] 2023. OpenAI. https://openai.com/ Accessed: 2023-03-26.
[7] 2023. Reborrow in Rust. https://github.com/rust-lang/reference/issues/788

Accessed: 2023-03-26.
[8] 2023. rustfmt. https://github.com/rust-lang/rustfmt Accessed: 2023-03-26.
[9] 2024. Rustc. https://github.com/rust-lang/rust/tree/master/tests Accessed:

2024-01-22.
[10] Parastoo Abtahi and Griffin Dietz. 2020. Learning Rust: How Experienced Pro-

grammers Leverage Resources to Learn a New Programming Language. In Ex-
tended Abstracts of the 2020 CHI Conference on Human Factors in Computing
Systems (CHI EA ’20). Honolulu, HI.

https://blogs.windows.com/windows-insider/2023/07/12/announcing-windows-11-insider-preview-build-25905/
https://blogs.windows.com/windows-insider/2023/07/12/announcing-windows-11-insider-preview-build-25905/
https://blogs.windows.com/windows-insider/2023/07/12/announcing-windows-11-insider-preview-build-25905/
https://crates.io/crates/quote
https://crates.io/crates/syn
https://www.gnu.org/software/diffutils/
https://sites.google.com/view/rust-lancet/index
https://openai.com/
https://github.com/rust-lang/reference/issues/788
https://github.com/rust-lang/rustfmt
https://github.com/rust-lang/rust/tree/master/tests

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Wenzhang Yang, Linhai Song, and Yinxing Xue

[11] Toufique Ahmed, Noah Rose Ledesma, and Premkumar T. Devanbu. 2021. SYN-
FIX: Automatically Fixing Syntax Errors using Compiler Diagnostics. CoRR
abs/2104.14671 (2021). arXiv:2104.14671 https://arxiv.org/abs/2104.14671

[12] Umair Z. Ahmed, Zhiyu Fan, Jooyong Yi, Omar I. Al-Bataineh, and Abhik Roy-
choudhury. 2022. Verifix: Verified Repair of Programming Assignments. ACM
Transactions on Software Engineering and Methodology. 31, 4 (2022), 74:1–74:31.
https://doi.org/10.1145/3510418

[13] Umair Z. Ahmed, Pawan Kumar, Amey Karkare, Purushottam Kar, and Sumit
Gulwani. 2018. Compilation error repair: for the student programs, from the
student programs. In Proceedings of the 40th International Conference on Soft-
ware Engineering: Software Engineering Education and Training (ICSE’2018 SEET),
Gothenburg, Sweden. https://doi.org/10.1145/3183377.3183383

[14] Umair Z. Ahmed, Renuka Sindhgatta, Nisheeth Srivastava, and Amey Karkare.
2019. Targeted Example Generation for Compilation Errors. In 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE’2019), San Diego,
CA, USA. https://doi.org/10.1109/ASE.2019.00039

[15] Matt Asay. 2020. Why AWS loves Rust, and how we’d like to
help. https://aws.amazon.com/blogs/opensource/why-aws-loves-rust-and-
how-wed-like-to-help/

[16] Sahil Bhatia and Rishabh Singh. 2016. Automated Correction for Syntax Er-
rors in Programming Assignments using Recurrent Neural Networks. CoRR
abs/1603.06129 (2016). arXiv:1603.06129 http://arxiv.org/abs/1603.06129

[17] Darshak Chhatbar, Umair Z. Ahmed, and Purushottam Kar. 2020. MACER: A
Modular Framework for Accelerated Compilation Error Repair. In Proceedings of
the 21st International Conference on Artificial Intelligence in Education (AIED’2020),
Ifrane, Morocco (Lecture Notes in Computer Science, Vol. 12163). https://doi.org/10.
1007/978-3-030-52237-7_9

[18] Reudismam Rolim de Sousa, Gustavo Soares, Rohit Gheyi, Titus Barik, and Loris
D’Antoni. 2021. Learning Quick Fixes from Code Repositories. In Proceedings
of the 35th Brazilian Symposium on Software Engineering (SBES’2021), Joinville,
Santa Catarina, Brazil. https://doi.org/10.1145/3474624.3474650

[19] Mehmet Emre, Ryan Schroeder, Kyle Dewey, and Ben Hardekopf. 2021. Trans-
lating C to safer Rust. Proceedings of the ACM on Programming Languages 5,
OOPSLA (2021), 1–29. https://doi.org/10.1145/3485498

[20] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish K. Shevade. 2017. DeepFix:
Fixing Common C Language Errors by Deep Learning. In Proceedings of the 31st
AAAI Conference on Artificial Intelligence (AAAI’2017), San Francisco, California,
USA. http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14603

[21] Foyzul Hassan and Xiaoyin Wang. 2018. HireBuild: an automatic approach to
history-driven repair of build scripts. In Proceedings of the 40th International
Conference on Software Engineering (ICSE’2018), Gothenburg, Sweden. https:
//doi.org/10.1145/3180155.3180181

[22] Jaemin Hong. 2023. Improving Automatic C-to-Rust Translation with Static
Analysis. In Proceedings of 45th IEEE/ACM International Conference on Software
Engineering (ICSE’2023 Companion), Melbourne, Australia. https://doi.org/10.
1109/ICSE-Companion58688.2023.00074

[23] Wei Huang, Ana L. Milanova, Werner Dietl, and Michael D. Ernst. 2012. Reim &
ReImInfer: checking and inference of reference immutability and method purity.
In Proceedings of the 27th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA’2012),Tucson, AZ,
USA. https://doi.org/10.1145/2384616.2384680

[24] Jianfeng Jiang, Hui Xu, and Yangfan Zhou. 2021. RULF: Rust Library Fuzzing via
API Dependency Graph Traversal. In Proceedings of 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE’2021), Melbourne, Australia.
https://doi.org/10.1109/ASE51524.2021.9678813

[25] Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. 2023. Impact of Code Lan-
guage Models on Automated Program Repair. In Proceedings of the 45th IEEE/ACM
International Conference on Software Engineering (ICSE’2023), Melbourne, Australia.
https://doi.org/10.1109/ICSE48619.2023.00125

[26] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
patch generation learned from human-written patches. In Proceedings of the 36th
IEEE/ACM International Conference on Software Engineering (ICSE’14). Hyderabad,
India. https://doi.org/10.1109/ICSE.2013.6606626

[27] Youngjae Kim, Seungheon Han, Askar Yeltayuly Khamit, and Jooyong Yi. 2023.
Automated Program Repair from Fuzzing Perspective. In Proceedings of the 32nd
ACM SIGSOFT International Symposium on Software Testing and Analysis (IS-
STA’2023), Seattle, WA, USA. https://doi.org/10.1145/3597926.3598101

[28] Steve Klabnik and Carol Nichols. 2023. The Rust programming language. No
Starch Press.

[29] Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Jacques Klein,
Martin Monperrus, and Yves Le Traon. 2020. FixMiner: Mining relevant fix
patterns for automated program repair. Empir. Softw. Eng. 25, 3 (2020), 1980–2024.
https://doi.org/10.1007/s10664-019-09780-z

[30] Xuan-Bach Dinh Le, Lingfeng Bao, David Lo, Xin Xia, Shanping Li, and Corina S.
Pasareanu. 2019. On reliability of patch correctness assessment. In Proceedings of
the 41st International Conference on Software Engineering (ICSE’2019), Montreal,
QC, Canada. https://doi.org/10.1109/ICSE.2019.00064

[31] Xuan-Bach Dinh Le, Ferdian Thung, David Lo, and Claire Le Goues. 2018. Over-
fitting in semantics-based automated program repair. In Proceedings of the 40th
International Conference on Software Engineering (ICSE’2018), Gothenburg, Sweden.
https://doi.org/10.1145/3180155.3182536

[32] Thanh Le-Cong, Duc-Minh Luong, Xuan-Bach Dinh Le, David Lo, Nhat-Hoa
Tran, Bui Quang Huy, and Quyet-Thang Huynh. 2023. Invalidator: Automated
Patch Correctness Assessment Via Semantic and Syntactic Reasoning. IEEE Trans.
Software Eng. 49, 6 (2023), 3411–3429. https://doi.org/10.1109/TSE.2023.3255177

[33] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat Pannuto,
Prabal Dutta, and Philip Levis. 2017. Multiprogramming a 64kB Computer
Safely and Efficiently. In Proceedings of the 26th Symposium on Operating Systems
Principles (SOSP ’17). Shanghai, China.

[34] Xueyang Li, Shangqing Liu, Ruitao Feng, Guozhu Meng, Xiaofei Xie, Kai Chen,
and Yang Liu. 2022. TransRepair: Context-aware Program Repair for Compilation
Errors. In Proceedings of 37th IEEE/ACM International Conference on Automated
Software Engineering (ASE’2022), Rochester, MI, USA. https://doi.org/10.1145/
3551349.3560422

[35] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019.
AVATAR: Fixing Semantic Bugs with Fix Patterns of Static Analysis Violations.
In Proceedings of 26th IEEE International Conference on Software Analysis, Evolu-
tion and Reengineering (SANER’2019), Hangzhou, China. https://doi.org/10.1109/
SANER.2019.8667970

[36] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019. TBar:
revisiting template-based automated program repair. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis (IS-
STA’2019), Beijing, China. https://doi.org/10.1145/3293882.3330577

[37] Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr.
2021. Alive2: bounded translation validation for LLVM. In Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation (PLDI’2021), Virtual Event, Canada. https://doi.org/10.1145/
3453483.3454030

[38] Yiling Lou, Junjie Chen, Lingming Zhang, Dan Hao, and Lu Zhang. 2019. History-
driven build failure fixing: how far are we?. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA’2019),
Beijing, China. https://doi.org/10.1145/3293882.3330578

[39] Sergey Mechtaev, Xiang Gao, Shin Hwei Tan, and Abhik Roychoudhury. 2018.
Test-Equivalence Analysis for Automatic Patch Generation. ACM Trans. Softw.
Eng. Methodol. 27, 4 (2018), 15:1–15:37. https://doi.org/10.1145/3241980

[40] Xiangxin Meng, Xu Wang, Hongyu Zhang, Hailong Sun, Xudong Liu, and Chun-
ming Hu. 2023. Template-based Neural Program Repair. In Proceedings of the
45th IEEE/ACM International Conference on Software Engineering (ICSE’2023),
Melbourne, Australia. https://doi.org/10.1109/ICSE48619.2023.00127

[41] Ali Mesbah, Andrew Rice, Emily Johnston, Nick Glorioso, and Edward Aftandilian.
2019. DeepDelta: learning to repair compilation errors. In Proceedings of the 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE’2019), Tallinn, Estonia.
https://doi.org/10.1145/3338906.3340455

[42] David A. Naumann. 2020. Thirty-Seven Years of Relational Hoare Logic: Remarks
on Its Principles and History. In Proceedings of the 9th International Symposium
on Leveraging Applications of Formal Methods (ISLAFM’2020), Rhodes, Greece.
https://doi.org/10.1007/978-3-030-61470-6_7

[43] Truong Giang Nguyen, Thanh Le-Cong, Hong Jin Kang, Ratnadira Widyasari,
Chengran Yang, Zhipeng Zhao, Bowen Xu, Jiayuan Zhou, Xin Xia, Ahmed E.
Hassan, Xuan-Bach Dinh Le, and David Lo. 2023. Multi-Granularity Detector for
Vulnerability Fixes. CoRR abs/2305.13884 (2023). https://doi.org/10.48550/arXiv.
2305.13884 arXiv:2305.13884

[44] Kai Pan, Sunghun Kim, and E. James Whitehead Jr. 2009. Toward an understand-
ing of bug fix patterns. Empirical Software Engineering. 14, 3 (2009), 286–315.
https://doi.org/10.1007/s10664-008-9077-5

[45] Nikhil Parasaram, Earl T. Barr, and Sergey Mechtaev. 2023. Rete: Learning Names-
pace Representation for Program Repair. In Proceedings of the 45th IEEE/ACM
International Conference on Software Engineering (ICSE’2023), Melbourne, Australia.
https://doi.org/10.1109/ICSE48619.2023.00112

[46] David J Pearce. 2021. A lightweight formalism for reference lifetimes and borrow-
ing in Rust. ACM Transactions on Programming Languages and Systems (TOPLAS)
43, 1 (2021), 1–73.

[47] Redox. 2023. Redox - Your Next(Gen) OS. https://www.redox-os.org/
[48] Amr Sabry and Matthias Felleisen. 1993. Reasoning about programs in

continuation-passing style. Lisp and symbolic computation 6 (1993), 289–360.
[49] Eddie Antonio Santos, Joshua Charles Campbell, Dhvani Patel, Abram Hindle,

and José Nelson Amaral. 2018. Syntax and sensibility: Using language models to
detect and correct syntax errors. In Proceedings of the 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER’2018), Campobasso,
Italy. https://doi.org/10.1109/SANER.2018.8330219

[50] Servo. 2023. Servo. https://servo.org/
[51] Edward K. Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the cure

worse than the disease? overfitting in automated program repair. In Proceedings
of the 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE’2015),

https://arxiv.org/abs/2104.14671
https://arxiv.org/abs/2104.14671
https://doi.org/10.1145/3510418
https://doi.org/10.1145/3183377.3183383
https://doi.org/10.1109/ASE.2019.00039
https://aws.amazon.com/blogs/opensource/why-aws-loves-rust-and-how-wed-like-to-help/
https://aws.amazon.com/blogs/opensource/why-aws-loves-rust-and-how-wed-like-to-help/
https://arxiv.org/abs/1603.06129
http://arxiv.org/abs/1603.06129
https://doi.org/10.1007/978-3-030-52237-7_9
https://doi.org/10.1007/978-3-030-52237-7_9
https://doi.org/10.1145/3474624.3474650
https://doi.org/10.1145/3485498
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14603
https://doi.org/10.1145/3180155.3180181
https://doi.org/10.1145/3180155.3180181
https://doi.org/10.1109/ICSE-Companion58688.2023.00074
https://doi.org/10.1109/ICSE-Companion58688.2023.00074
https://doi.org/10.1145/2384616.2384680
https://doi.org/10.1109/ASE51524.2021.9678813
https://doi.org/10.1109/ICSE48619.2023.00125
https://doi.org/10.1109/ICSE.2013.6606626
https://doi.org/10.1145/3597926.3598101
https://doi.org/10.1007/s10664-019-09780-z
https://doi.org/10.1109/ICSE.2019.00064
https://doi.org/10.1145/3180155.3182536
https://doi.org/10.1109/TSE.2023.3255177
https://doi.org/10.1145/3551349.3560422
https://doi.org/10.1145/3551349.3560422
https://doi.org/10.1109/SANER.2019.8667970
https://doi.org/10.1109/SANER.2019.8667970
https://doi.org/10.1145/3293882.3330577
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/3293882.3330578
https://doi.org/10.1145/3241980
https://doi.org/10.1109/ICSE48619.2023.00127
https://doi.org/10.1145/3338906.3340455
https://doi.org/10.1007/978-3-030-61470-6_7
https://doi.org/10.48550/arXiv.2305.13884
https://doi.org/10.48550/arXiv.2305.13884
https://arxiv.org/abs/2305.13884
https://doi.org/10.1007/s10664-008-9077-5
https://doi.org/10.1109/ICSE48619.2023.00112
https://www.redox-os.org/
https://doi.org/10.1109/SANER.2018.8330219
https://servo.org/

Rust-lancet: Automated Ownership-Rule-Violation Fixing with Behavior Preservation ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Bergamo, Italy. https://doi.org/10.1145/2786805.2786825
[52] Zhensu Sun, Li Li, Yan Liu, Xiaoning Du, and Li Li. 2022. On the Importance of

Building High-quality Training Datasets for Neural Code Search. In Proceedings of
the IEEE/ACM 44th International Conference on Software Engineering (ICSE’2022),
Pittsburgh, PA, USA. https://doi.org/10.1145/3510003.3510160

[53] Valerio Terragni, Yepang Liu, and Shing-Chi Cheung. 2016. CSNIPPEX: automated
synthesis of compilable code snippets from Q&A sites. In Proceedings of the
25th International Symposium on Software Testing and Analysis (ISSTA’2016),
Saarbrücken, Germany. https://doi.org/10.1145/2931037.2931058

[54] Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation
vs. Experience: Evaluating the Usability of Code Generation Tools Powered by
Large Language Models. In Proceedings of the Conference on Human Factors in
Computing Systems (CHI EA’2022), New Orleans, LA, USA. https://doi.org/10.
1145/3491101.3519665

[55] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.
Context-aware patch generation for better automated program repair. In Pro-
ceedings of the 40th International Conference on Software Engineering (ICSE’2018),
Gothenburg, Sweden. https://doi.org/10.1145/3180155.3180233

[56] Qi Xin and Steven P. Reiss. 2017. Identifying test-suite-overfitted patches through
test case generation. In Proceedings of the 26th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis (ISSTA’2017), Santa Barbara, CA, USA.
https://doi.org/10.1145/3092703.3092718

[57] Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, and Gang Huang. 2018.
Identifying patch correctness in test-based program repair. In Proceedings of the
40th International Conference on Software Engineering (ICSE’2018), Gothenburg,
Sweden. https://doi.org/10.1145/3180155.3180182

[58] Ke Xu, Yao Xiao, Zhaoheng Zheng, Kaijie Cai, and Ram Nevatia. 2023. PatchZero:
Defending against Adversarial Patch Attacks by Detecting and Zeroing the Patch.
In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV’2023), Waikoloa, HI, USA. https://doi.org/10.1109/WACV56688.
2023.00461

[59] Michihiro Yasunaga and Percy Liang. 2020. Graph-based, Self-Supervised
Program Repair from Diagnostic Feedback. In Proceedings of the 37th Inter-
national Conference on Machine Learning (ICML’2020), Virtual Event. http:
//proceedings.mlr.press/v119/yasunaga20a.html

[60] He Ye, Jian Gu, Matias Martinez, Thomas Durieux, and Martin Monperrus. 2022.
Automated Classification of Overfitting Patches With Statically Extracted Code
Features. IEEE Trans. Software Eng. 48, 8 (2022), 2920–2938. https://doi.org/10.
1109/TSE.2021.3071750

[61] He Ye, Matias Martinez, and Martin Monperrus. 2021. Automated patch as-
sessment for program repair at scale. Empir. Softw. Eng. 26, 2 (2021), 20.
https://doi.org/10.1007/s10664-020-09920-w

[62] Anna Zeng and Will Crichton. 2018. Identifying Barriers to Adoption for Rust
through Online Discourse. In PLATEAU@SPLASH ’18. Boston, MA.

[63] Hanliang Zhang, Cristina David, Yijun Yu, and Meng Wang. 2023. Ownership
Guided C to Rust Translation. In Proceedings of the 35th International Conference on
Computer Aided Verification (CAV’2023), Paris, France. https://doi.org/10.1007/978-
3-031-37709-9_22

[64] Qian Zhang, Jiyuan Wang, Guoqing Harry Xu, and Miryung Kim. 2022. Hetero-
Gen: transpiling C to heterogeneous HLS code with automated test generation
and program repair. In Proceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems (ASP-
LOS’2022), Lausanne, Switzerland. https://doi.org/10.1145/3503222.3507748

[65] Qihao Zhu, Zeyu Sun, Wenjie Zhang, Yingfei Xiong, and Lu Zhang. 2023. Tare:
Type-Aware Neural Program Repair. In Proceedings of the 45th IEEE/ACM Inter-
national Conference on Software Engineering (ICSE’2023), Melbourne, Australia.
https://doi.org/10.1109/ICSE48619.2023.00126

[66] Shuofei Zhu, Ziyi Zhang, Boqin Qin, Aiping Xiong, and Linhai Song. 2022. Learn-
ing and Programming Challenges of Rust: AMixed-Methods Study. In Proceedings
of the 44th International Conference on Software Engineering (ICSE’22). Pittsburgh,
Pennsylvania. https://doi.org/10.1145/3510003.3510164

https://doi.org/10.1145/2786805.2786825
https://doi.org/10.1145/3510003.3510160
https://doi.org/10.1145/2931037.2931058
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3180155.3180233
https://doi.org/10.1145/3092703.3092718
https://doi.org/10.1145/3180155.3180182
https://doi.org/10.1109/WACV56688.2023.00461
https://doi.org/10.1109/WACV56688.2023.00461
http://proceedings.mlr.press/v119/yasunaga20a.html
http://proceedings.mlr.press/v119/yasunaga20a.html
https://doi.org/10.1109/TSE.2021.3071750
https://doi.org/10.1109/TSE.2021.3071750
https://doi.org/10.1007/s10664-020-09920-w
https://doi.org/10.1007/978-3-031-37709-9_22
https://doi.org/10.1007/978-3-031-37709-9_22
https://doi.org/10.1145/3503222.3507748
https://doi.org/10.1109/ICSE48619.2023.00126
https://doi.org/10.1145/3510003.3510164

	Abstract
	1 Introduction
	2 Background
	2.1 Rust's Safety Mechanism
	2.2 Rust's Programming Challenges
	2.3 Program Scope

	3 Proposed Approach
	3.1 Overview
	3.2 Error Categories
	3.3 Fixing Loop
	3.4 Behavior Preservation

	4 Evaluation
	4.1 Experimental Settings
	4.2 Experimental Results

	5 Discussion
	6 Related Work
	7 Conclusion
	8 acknowledgment
	References

