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Abstract
Rust is a young programming language designed for systems
software development. It aims to provide safety guarantees
like high-level languages and performance efficiency like
low-level languages. The core design of Rust is a set of strict
safety rules enforced by compile-time checking. To support
more low-level controls, Rust allows programmers to bypass
these compiler checks to write unsafe code.
It is important to understand what safety issues exist in

real Rust programs and how Rust safety mechanisms impact
programming practices. We performed the first empirical
study of Rust by close, manual inspection of 850 unsafe code
usages and 170 bugs in five open-source Rust projects, five
widely-used Rust libraries, two online security databases, and
the Rust standard library. Our study answers three important
questions: how and why do programmers write unsafe code,
what memory-safety issues real Rust programs have, and
what concurrency bugs Rust programmers make. Our study
reveals interesting real-world Rust program behaviors and
new issues Rust programmers make. Based on our study
results, we propose several directions of building Rust bug
detectors and built two static bug detectors, both of which
revealed previously unknown bugs.

CCS Concepts: • Software and its engineering → Soft-
ware safety; Software reliability.
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1 Introduction
Rust [30] is a programming language designed to build ef-
ficient and safe low-level software [8, 69, 73, 74]. Its main
idea is to inherit most features in C and C’s good runtime
performance but to rule out C’s safety issues with strict
compile-time checking. Over the past few years, Rust has
gained increasing popularity [46–48], especially in building
low-level software like OSes and browsers [55, 59, 68, 71, 77].
The core of Rust’s safety mechanisms is the concept of

ownership. The most basic ownership rule allows each value
to have only one owner and the value is freed when its
owner’s lifetime ends. Rust extends this basic rule with a
set of rules that still guarantee memory and thread safety.
For example, the ownership can be borrowed or transferred,
and multiple aliases can read a value. These safety rules
essentially prohibit the combination of aliasing and muta-
bility. Rust checks these safety rules at compile time, thus
achieving the runtime performance that is on par with unsafe
languages like C but with much stronger safety guarantees.
The above safety rules Rust enforces limit programmers’

control over low-level resources and are often overkill when
delivering safety. To provide more flexibility to programmers,
Rust allows programmers to bypass main compiler safety
checks by adding an unsafe label to their code. A function can
be defined as unsafe or a piece of code inside a function can
be unsafe. For the latter, the function can be called as a safe
function in safe code, which provides a way to encapsulate
unsafe code. We call this code pattern interior unsafe.

Unfortunately, unsafe code in Rust can lead to safety issues
since it bypasses Rust’s compiler safety checks. Adding un-
safe code and unsafe encapsulation complicates Rust’s safety
semantics. Does unsafe code cause the same safety issues as

https://doi.org/10.1145/3385412.3386036
https://doi.org/10.1145/3385412.3386036
https://doi.org/10.1145/3385412.3386036


PLDI ’20, June 15–20, 2020, London, UK Boqin Qin, Yilun Chen, Zeming Yu, Linhai Song, and Yiying Zhang

traditional unsafe languages? Can there still be safety issues
when programmers do not use any “unsafe” label in their
code? What happens when unsafe and safe code interact?
Several recent works [2, 13, 28, 29] formalize and theoret-
ically prove (a subset of) Rust’s safety and interior-unsafe
mechanisms. However, it is unclear how Rust’s language
safety and unsafe designs affect real-world Rust develop-
ers and what safety issues real Rust software has. With the
wider adoption of Rust in systems software in recent years,
it is important to answer these questions and understand
real-world Rust program behaviors.

In this paper, we conduct the first empirical study of safety
practices and safety issues in real-world Rust programs. We
examine how safe and unsafe code are used in practice, and
how the usages can lead to memory safety issues (i.e., ille-
gal memory accesses) and thread safety issues (i.e., thread
synchronization issues like deadlock and race conditions).
Our study has a particular focus on how Rust’s ownership
and lifetime rules impact developers’ programming and how
the misuse of these rules causes safety issues, since these are
Rust’s unique and key features.
Our study covers five Rust-based systems and applica-

tions (two OSes, a browser, a key-value store system, and
a blockchain system), five widely-used Rust libraries, and
two online vulnerability databases. We analyzed their source
code, their GitHub commit logs and publicly reported bugs
by first filtering them into a small relevant set and then
manually inspecting this set. In total, we studied 850 unsafe
code usages, 70 memory-safety issues, and 100 thread-safety
issues.
Our study includes three parts. First, we study how un-

safe code is used, changed, and encapsulated. We found
that unsafe code is extensively used in all of our studied
Rust software and it is usually used for good reasons (e.g.,
performance, code reuse), although programmers also try
to reduce unsafe usages when they can. We further found
that programmers use interior unsafe as a good practice to
encapsulate unsafe code. However, explicitly and properly
checking interior unsafe code can be difficult. Sometimes
safe encapsulation is achieved by providing correct inputs
and environments.
Second, we study memory-safety issues in real Rust pro-

grams by inspecting bugs in our selected applications and li-
braries and by examining allRust issues reported onCVE [12]
and RustSec [66]. We not only analyze these bugs’ behaviors
but also understand how the root causes of them are propa-
gated to the effect of them. We found that all memory-safety
bugs involve unsafe code, and (surprisingly) most of them
also involve safe code. Mistakes are easy to happen when
programmers write safe code without the caution of other
related code being unsafe. We also found that the scope of
lifetime in Rust is difficult to reason about, especially when
combined with unsafe code, and wrong understanding of
lifetime causes many memory-safety issues.

Finally, we study concurrency bugs, including non-blocking
and blocking bugs [80]. Surprisingly, we found that non-
blocking bugs can happen in both unsafe and safe code and
that all blocking bugs we studied are in safe code. Although
many bug patterns in Rust follow traditional concurrency
bug patterns (e.g., double lock, atomicity violation), a lot of
the concurrency bugs in Rust are caused by programmers’
misunderstanding of Rust’s (complex) lifetime and safety
rules.

For all the above three aspects, we make insightful sugges-
tions to future Rust programmers and language designers.
Most of these suggestions can be directly acted on. For ex-
ample, based on the understanding of real-world Rust usage
patterns, we make recommendations on good programming
practices; based on our summary of common buggy code
patterns and pitfalls, we make concrete suggestions on the
design of future Rust bug detectors and programming tools.

With our empirical study results, we conducted an initial
exploration on detecting Rust bugs by building two static bug
detectors (one for use-after-free bugs and one for double-lock
bugs). In total, these detectors found ten previously unknown
bugs in our studied Rust applications. These encouraging
(initial) results demonstrate the value of our empirical study.

We believe that programmers, researchers, and language
designers can use our study results and the concrete, action-
able suggestions we made to improve Rust software devel-
opment (better programming practices, better bug detection
tools, and better language designs). Overall, this paper makes
the following contributions.

• The first empirical study on real-world Rust program
behaviors.

• Analysis of real-world usages of safe, unsafe, and interior-
unsafe code, with close inspection of 850 unsafe usages
and 130 unsafe removals.

• Close inspection of 70 real Rust memory-safety issues
and 100 concurrency bugs.

• 11 insights and 8 suggestions that can help Rust pro-
grammers and the future development of Rust.

• Two new Rust bug detectors and recommendations on
how to build more Rust bug detectors.

All study results and our bug detectors can be found at
https://github.com/system-pclub/rust-study.

2 Background and Related Work
This section gives some background of Rust, including its
history, safety (and unsafe) mechanisms, and its current sup-
port of bug detection, and overviews research projects on
Rust related to ours.

2.1 Language Overview and History
Rust is a type-safe language designed to be both efficient
and safe. It was designed for low-level software development
where programmers desire low-level control of resources
(so that programs run efficiently) but want to be type-safe

https://github.com/system-pclub/rust-study
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Figure 1. Rust History. Each blue
point shows the number of feature changes
in one release version. Each red point shows
total LOC in one release version.
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Figure 2. Time of Studied Bugs.
Each point shows the number of our stud-
ied bugs that were patched during a three
month period.

Table 1. Studied Applications and Libraries.
The start time, number of stars, and commits on GitHub,
total source lines of code, the number of memory safety
bugs, blocking bugs, and non-blocking bugs. libraries:
maximum values among our studied libraries. There are
22 bugs collected from the two CVE databases.
Software Start Time Stars Commits LOC Mem Blk NBlk
Servo 2012/02 14574 38096 271K 14 13 18
Tock 2015/05 1343 4621 60K 5 0 2
Ethereum 2015/11 5565 12121 145K 2 34 4
TiKV 2016/01 5717 3897 149K 1 4 3
Redox 2016/08 11450 2129 199K 20 2 3
libraries 2010/07 3106 2402 25K 7 6 10

and memory-safe. Rust defines a set of strict safety rules and
uses the compiler to check these rules to statically rule out
many potential safety issues. At runtime, Rust behaves like
C and could achieve performance that is close to C.
Rust is the most loved language in 2019 according to a

Stack Overflow survey [49], and it was ranked as the fifth
fastest growing language on GitHub in 2018 [45]. Because
of its safety and performance benefits, Rust’s adoption in
systems software has increased rapidly in recent years [3, 16,
23, 59, 68, 76, 77]. For example,Microsoft is actively exploring
Rust as an alternative to C/C++ because of its memory-safety
features [9, 44].

Rust was first released in 2012 and is now at version 1.39.0.
Figure 1 shows the number of feature changes and LOC over
the history of Rust. Rust went through heavy changes in the
first four years since its release, and it has been stable since
Jan 2016 (v1.6.0). With it being stable for more than three
and a half years, we believe that Rust is now mature enough
for an empirical study like ours. Figure 2 shows the fixed
date of our analyzed bugs. Among the 170 bugs, 145 of them
were fixed after 2016. Therefore, we believe our study results
reflect the safety issues under stable Rust versions.

1 #[derive(Debug)]

2 struct Test {v: i32}
3 fn f0(_t: Test) {}

4 fn f1() {

5 let t0 = Test{v: 0};

6 f0(t0);

7 // println!("{:?}", t0);

8 if true {

9 let t1 = Test{v: 1};

10 }

11 // println!("{:?}", t1);

12 }

13 fn f2() {

14 let mut t2 = Test{v: 2};

15 let r1 = &t2;

16 let mut r2 = &mut t2;

17 r2.v = 3;

18 // println!("{:?}", r1);

19 }

(a) ownership & lifetime (b) borrow

Figure 3. Sample code to illustrate Rust’s safety rules.
2.2 Safety Mechanisms
The goal of Rust’s safety mechanism is to prevent memory
and thread safety issues that have plagued C programs. Its
design centers around the notion of ownership. At its core,
Rust enforces a strict and restrictive rule of ownership: each
value has one and only one owner variable, and when the
owner’s lifetime ends, the value will be dropped (freed). The
lifetime of a variable is the scope where it is valid, i.e., from
its creation to the end of the function it is in or to the end

of matching parentheses (e.g., the lifetime of t1 in Figure 3
spans from line 9 to line 10). This strict ownership rule elim-
inates memory errors like use-after-free and double-free,
since the Rust compiler can statically detect and rejects the
use of a value when its owner goes out of scope (e.g., un-
commenting line 11 in Figure 3 will raise a compile error).
This rule also eliminates synchronization errors like race
conditions, since only one thread can own a value at a time.

Under Rust’s basic ownership rule, a value has one exclu-
sive owner. Rust extends this basic rule with a set of features
to support more programming flexibility while still ensur-
ing memory- and thread-safety. These features (as explained
below) relax the restriction of having only one owner for
the lifetime of a value but still prohibit having aliasing and
mutation at the same time, and Rust statically checks these
extended rules at compile time.
Ownership move. The ownership of a value can be moved
from one scope to another, for example, from a caller to
a callee and from one thread to another thread. The Rust
compiler statically guarantees that an owner variable cannot
be accessed after its ownership is moved. As a result, a caller
cannot access a value anymore if the value is dropped in the
callee function, and a shared value can only be owned by
one thread at any time. For example, if line 7 in Figure 3 is
uncommented, the Rust compiler will report an error, since
the ownership of t0 has already been moved to function
f0() at line 6.
Ownership borrowing. A value’s ownership can also be
borrowed temporarily to another variable for the lifetime of
this variable without moving the ownership. Borrowing is
achieved by passing the value by reference to the borrower
variable. Rust does not allow borrowing ownership across
threads, since a value’s lifetime cannot be statically inferred
across threads and there is no way the Rust compiler can
guarantee that all usages of a value are covered by its lifetime.
Mutable and Shared references. Another extension Rust
adds on top of the basic ownership rules is the support of mul-
tiple shared read-only references, i.e., immutable references
that allow read-only aliasing. A value’s reference can also
be mutable, allowing write access to the value, but there can
only be one mutable reference and no immutable references
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1 struct TestCell { value: i32, }

2 unsafe impl Sync for TestCell{}

3 impl TestCell {

4 fn set(&self, i: i32) {

5 let p = &self.value as * const i32 as * mut i32;
6 unsafe{*p = i};

7 }

8 }

Figure 4. Sample code for (interior) unsafe.
at any single time. After borrowing a value’s ownership
through mutable reference, the temporary owner has the ex-
clusive write access to the value. In Figure 3, an immutable
reference (r1) and a mutable reference (r2) are created at
line 15 and line 16, respectively. The Rust compiler does not
allow line 18, since it will make the lifetime of r1 end after
line 18, making r1 and r2 co-exist at line 16 and line 17.
2.3 Unsafe and Interior Unsafe
Rust’s safety rules are strict and its static compiler checking
for the rules is conservative. Developers (especially low-level
software developers) often need more flexibility in writing
their code, and some desires to manage safety by themselves
(see Section 4 for real examples). Rust allows programs to by-
pass its safety checking with the unsafe feature, denoted by
the keyword unsafe. A function can be marked as unsafe;
a piece of code can be marked as unsafe; and a trait can
be marked as unsafe (Rust traits are similar to interfaces
in traditional languages like Java). Code regions marked
with unsafe will bypass Rust’s compiler checks and be able
to perform five types of functionalities: dereferencing and
manipulating raw pointers, accessing and modifying mu-
table static variables (i.e., global variables), calling unsafe
functions, implementing unsafe traits, and accessing union
fields. Figure 4 shows the implementation of a simple struct,
which implements the unsafe Sync trait at line 2. The pointer
operation at line 6 is in an unsafe code region.

Rust allows a function to have unsafe code only internally;
such a function can be called by safe code and thus is con-
sidered “safe” externally. We call this pattern interior unsafe
(e.g., function set() in Figure 4).

The design rationale of interior unsafe code is to have the
flexibility and low-level management of unsafe code but to
encapsulate the unsafe code in a carefully-controlled inter-
face, or at least that is the intention of the interior unsafe
design. For example, Rust uses interior-unsafe functions to
allow the combination of aliasing and mutation (i.e., bypass-
ing Rust’s core safety rules) in a controlled way: the internal
unsafe code can mutate values using multiple aliases, but
these mutations are encapsulated in a small number of im-
mutable APIs that can be called in safe code and pass Rust’s
safety checks. Rust calls this feature interior mutability. Func-
tion set() in Figure 4 is an interior mutability function. Its
input self is borrowed immutably, but the value field of
self is changed through pointer p (an alias) at line 6.
Many APIs provided by the Rust standard library are

interior-unsafe functions, such as Arc, Rc, Cell, RefCell,

Mutex, and RwLock. Section 4.3 presents our analysis of inte-
rior unsafe usages in the Rust standard library.

2.4 Bug Detection in Rust
Rust runtime detects and triggers a panic on certain types
of bugs, such as buffer overflow, division by zero and stack
overflow. Rust also provides more bug-detecting features in
its debug build mode, including detection of double lock and
integer overflow. These dynamic detection mechanisms Rust
provides only capture a small number of issues.
Rust uses LLVM [32] as its backend. Many static and dy-

namic bug detection techniques [4, 40, 88, 89] designed for
C/C++ can also be applied to Rust. However, it is still valu-
able to build Rust-specific detectors, because Rust’s new
language features and libraries can cause new types of bugs
as evidenced by our study.

Researchers have designed a few bug detection techniques
for Rust. Rust-clippy [64] is a static detector for memory bugs
that follow certain simple source-code patterns. It only cov-
ers a small amount of buggy patterns. Miri [43] is a dynamic
memory-bug detector that interprets and executes Rust’s
mid-level intermediate representation (MIR). Jung et al. pro-
posed an alias model for Rust [27]. Based on this model, they
built a dynamic memory-bug detector that uses a stack to dy-
namically track all valid references/pointers to each memory
location and reports potential undefined behavior and mem-
ory bugs when references are not used in a properly-nested
manner. The two dynamic detectors rely on user-provided
inputs that can trigger memory bugs. From our experiments,
Miri also generates many false positives.

These existing Rust bug detection tools all have their own
limitations, and none of them targets concurrency bugs. An
empirical study on Rust bugs like this work is important. It
can help future researchers and practitioners to build more
Rust-specific detectors. In fact, we have built two detectors
based on our findings in this study, both of which reveal
previously undiscovered bugs.

2.5 Formalizing and Proving Rust’s Correctness
Several previous works aim to formalize or prove the cor-
rectness of Rust programs [2, 13, 28, 29, 61]. RustBelt [28]
conducts the first safety proof for a subset of Rust. Patina [61]
proves the safety of Rust’smemorymanagement. Baranowski
et al. extend the SMACKverifier towork on Rust programs [2].
After formalizing Rust’s type system in CLP, Rust programs
can be generated by solving a constraint satisfaction prob-
lem, and the generated programs can then be used to detect
bugs in the Rust compiler [13]. K-Rust [29] compares the
execution of a Rust program in K-Framework environment
with the execution on a real machine to identify inconsis-
tency between Rust’s specification and the Rust compiler’s
implementation. Different from these works, our study aims
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to understand common mistakes made by real Rust develop-
ers, and it can improve the safety of Rust programs from a
practical perspective.

2.6 Empirical Studies
In the past, researchers have conducted various empirical
studies on different kinds of bugs in different programming
languages [7, 19, 20, 24, 34, 38, 39]. As far as we know, we
are the first study on real-world mistakes of Rust code.
There are only a few empirical studies on Rust’s unsafe

code usage similar to what we performed in Section 4. How-
ever, the scales of these studies are small on both the appli-
cations studied and the features studied. One previous study
counts the number of Rust libraries that depend on external
C/C++ libraries [72]. One study counts the amount of unsafe
code in crates.io [50]. Another analyzes several cases where
interior unsafe is not well encapsulated [51]. Our work is
the first large-scale, systematic empirical study on unsafe in
Rust. We study many aspects not covered by previous works.

3 Study Methodology
Although there are books, blogs, and theoretical publications
that discuss Rust’s design philosophy, benefits, and unique
features, it is unclear how real-world Rust programmers use
Rust and what pitfalls they make. An empirical study on
real-world Rust software like ours is important for several
reasons. It can demonstrate how real programmers use Rust
and how their behavior changes over time. It can also reveal
what mistakes (bugs) real programmers make and how they
fix them. Some of these usage patterns and mistakes could be
previously unknown. Even if they are, we can demonstrate
through real data how often they happen and dig into deeper
reasons why programmers write their code in that way. Our
study reflects all the above values of empirical studies.

To perform an empirical study, we spent numerousmanual
efforts inspecting and understanding real Rust code. These
efforts result in this paper, which we hope will fuel future
research and practices to improve Rust programming and
in turn save future Rust programmers’ time. Before present-
ing our study results, this section first outlines our studied
applications and our study methodology.
Studied Rust software and libraries. Our criteria of se-
lecting what Rust software to study include open source,
long code history, popular software, and active maintenance.
We also aim to cover a wide range of software types (from
user-level applications and libraries to OSes). Based on these
criteria, we selected five software systems and five libraries
for our study (Table 1).

Servo [68] is a browser engine developed by Mozilla. Servo
has been developed side by side with Rust and has the longest
history among the applications we studied. TiKV [76] is a
key-value store that supports both single key-value-pair and
transactional key-value accesses. Parity Ethereum [15] is

a fast, secure blockchain client written in Rust (we call it
Ethereum for brevity in the rest of the paper). Redox [59] is an
open-source secure OS that adopts microkernel architecture
but exposes UNIX-like interface. Tock [35] is a Rust-based
embedded OS. Tock leverages Rust’s compile-time memory-
safety checking to isolate its OS modules.
Apart from the above five applications, we studied five

widely-used Rust libraries (also written in Rust). They in-
clude 1) Rand [56], a library for random number generation,
2) Crossbeam [10], a framework for building lock-free con-
current data structures, 3) Threadpool [75], Rust’s implemen-
tation of thread pool, 4) Rayon [58], a library for parallel
computing, and 5) Lazy_static [33], a library for defining
lazily evaluated static variables.
Collecting and studying bugs. To collect bugs, we ana-
lyzed GitHub commit logs from applications in Table 1. We
first filtered the commit logs using a set of safety-related key-
words, e.g., “use-after-free” for memory bugs, “deadlock” for
concurrency bugs. These keywords either cover important
issues in the research community [11, 82, 83] or are used
in previous works to collect bugs [34, 36, 39, 80]. We then
manually inspected filtered logs to identify bugs. For our
memory-safety study, we also analyzed all Rust-related vul-
nerabilities in two online vulnerability databases, CVE [12]
and RustSec [66]. In total, we studied 70 memory and 100
concurrency bugs.

We manually inspected and analyzed all available sources
for each bug, including its patch, bug report, and online
discussions. Each bug is examined by at least two people in
our team. We also reproduced a set of bugs to validate our
understanding.
Instead of selecting some of the study results (e.g., those

that are unexpected), we report all our study results and
findings. Doing so can truthfully reflect the actual status of
how programmers in the real world use Rust. During our
bug study, we identified common mistakes made by different
developers in different projects. We believe similar mistakes
can be made by other developers in many other Rust projects.
Reporting all found errors (including known errors) can help
developers avoid similar errors in the future and motivate
the development of related detection techniques.

4 Unsafe Usages
There is a fair amount of unsafe code in Rust programs.
We found 4990 unsafe usages in our studied applications
in Table 1, including 3665 unsafe code regions, 1302 unsafe
functions, and 23 unsafe traits. In Rust’s standard library
(Rust std for short), we found 1581 unsafe code regions, 861
unsafe functions, and 12 unsafe traits.
Since unsafe code bypasses compiler safety checks, un-

derstanding unsafe usages is an important aspect of studying
safety practice in reality. We randomly select 600 unsafe us-
ages from our studied applications, including 400 interior
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unsafe usages and 200 unsafe functions. We also studied 250
interior unsafe usages in Rust std. We manually inspect these
unsafe usages to understand 1) why unsafe is used in the
latest program versions, 2) how unsafe is removed during
software evolution, and 3) how interior unsafe is encapsu-
lated.

4.1 Reasons of Usage
To understand how and why programmers write unsafe code,
we first inspect the type of operations these unsafe usages
are performing. Most of them (66%) are for (unsafe) mem-
ory operations, such as raw pointer manipulation and type
casting. Calling unsafe functions counts for 29% of the total
unsafe usages. Most of these calls are made to unsafe func-
tions programmers write themselves and functions written
in other languages. In Rust std, the heaviest unsafe usages
appear in the sys module, likely because it interacts more
with low-level systems.

To understand the reasons why programmers use unsafe
code, we further analyze the purposes of our studied 600 un-
safe usages. The most common purpose of the unsafe usages
is to reuse existing code (42%), for example, to convert a C-
style array to Rust’s variable-size array (called slice), to call
functions from external libraries like glibc. Another common
purpose of using unsafe code is to improve performance
(22%). We wrote simple tests to evaluate the performance
difference between some of the unsafe and safe code that can
deliver the same functionalities. Our experiments show that
unsafe memory copy with ptr::copy_nonoverlapping()
is 23% faster than the slice::copy_from_slice() in some
cases. Unsafe memory access with slice::get_
unchecked() is 4-5× faster than the safe memory access
with boundary checking. Traversing an array by pointer
computing (ptr::offset()) and dereferencing is also 4-5×
faster than the safe array access with boundary checking.
The remaining unsafe usages include bypassing Rust’s safety
rules to share data across threads (14%) and other types of
Rust compiler check bypassing.

One interesting finding is that sometimes removing unsafe
will not cause any compile errors (32 or 5% of the unsafe
usages in the applications we studied). For 21 of them, pro-
grammers mark a function as unsafe for code consistency
(e.g., the same function for a different platform is unsafe).
For the rest, programmers use unsafe to give a warning of
possible dangers in using this function.

Worth noticing is a special case of using unsafe for warn-
ing purposes. Five unsafe usages among the above no-compile-
error cases are for labeling struct constructors (there are also
50 such usages in the Rust std library). These constructors
only contain safe operations (e.g., initializing struct fields
using input parameters), but other functions in the struct
can perform unsafe operations and their safety depends on
safe initialization of the struct. For example, in Rust std, the
String struct has a constructor function String::from_utf8_

unchecked() which creates a String using the input ar-
ray of characters. This constructor is marked as an unsafe
function although the operations in it are all safe. However,
other member functions of String that use the array con-
tent could potentially have safety issues due to invalid UTF-8
characters. Instead of marking all these functions unsafe and
requiring programmers to properly check safe conditions
when using them, it is more efficient and reliable to mark
only the constructor as unsafe. This design pattern essen-
tially encapsulates the unsafe nature in a much smaller scope.
Similar usages also happen in applications and explained by
developers as good practice [78].
Insight 1: Most unsafe usages are for good or unavoidable
reasons, indicating that Rust’s rule checks are sometimes too
strict and that it is useful to provide an alternative way to
escape these checks.

Suggestion 1: Programmers should try to find the source
of unsafety and only export that piece of code as an unsafe
interface to minimize unsafe interfaces and to reduce code
inspection efforts.

4.2 Unsafe Removal
Although most of the unsafe usages we found are for good
reasons, programmers sometimes remove unsafe code or
change them to safe ones. We analyzed 108 randomly se-
lected commit logs that contain cases where unsafe is re-
moved (130 cases in total). The purposes of these unsafe
code removals include improving memory safety (61%), bet-
ter code structure (24%), improving thread safety (10%), bug
fixing (3%), and removing unnecessary usages (2%).
Among our analyzed commit logs, 43 cases completely

change unsafe code to safe code. The remaining cases change
unsafe code to interior unsafe code, with 48 interior unsafe
functions in Rust std, 29 self-implemented interior unsafe
functions, and 10 third-party interior unsafe functions. By
encapsulating unsafe code in an interior unsafe function that
can be safely called at many places, programmers only need
to ensure the safety in this one interior unsafe function (e.g.,
by checking conditions) instead of performing similar checks
at every usage of the unsafe code.
Insight 2: Interior unsafe is a good way to encapsulate unsafe
code.

Suggestion 2: Rust developers should first try to properly
encapsulate unsafe code in interior unsafe functions before
exposing them as unsafe.

4.3 Encapsulating Interior Unsafe
With unsafe code being an essential part of Rust software, it
is important to know what are the good practices when writ-
ing unsafe code. From our analysis results above and from
Rustonomicon [65], encapsulating unsafe code with interior
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1 impl<T, ...> Queue<T, ...> {

2 pub fn pop(&self) -> Option<T> { unsafe {...}}

3 pub fn peek(&self) -> Option<&mut T> { unsafe {...}}

4 }

5 // let e = Q.peek().unwrap();

6 // {Q.pop()}

7 // println!("{}", *e); < - use after free

Figure 5. An interior mutability example in Rust std.

unsafe functions is a good practice. But it is important to
understand how to properly write such encapsulation.
To answer this question, we first analyze how Rust std

encapsulates interior unsafe code (by both understanding
the code and reading its comments and documentation). Rust
std interior unsafe functions are called heavily by Rust soft-
ware. It is important to both learn from how std encapsulates
unsafe code and examine if there is any issue in such encap-
sulation.

In total, we sampled 250 interior unsafe functions in Rust
std. For the unsafe code to work properly, different types of
conditions need to be satisfied. For example, 69% of interior
unsafe code regions require validmemory space or valid UTF-
8 characters. 15% require conditions in lifetime or ownership.

We then examined how Rust std ensures that these condi-
tions are met. Surprisingly, Rust std does not perform any
explicit condition checking in most of its interior unsafe
functions (58%). Instead, it ensures that the input or the envi-
ronment that the interior unsafe code executes with is safe.
For example, the unsafe function Arc::from_raw() always
takes input from the return of Arc::into_raw() in all sam-
pled interior unsafe functions. Rust std performs explicit
checking for the rest of the interior unsafe functions, e.g., by
confirming that an index is within the memory boundary.
After understanding std interior unsafe functions, we in-

spect 400 sampled interior unsafe functions in our studied
applications.We have similar findings from these application-
written interior unsafe functions.

Worth noticing is that we identified 19 cases where interior
unsafe code is improperly encapsulated, including five from
the std and 14 from the applications. Although they have
not caused any real bugs in the applications we studied,
they may potentially cause safety issues if they are not used
properly. Four of them do not perform any checking of return
values from external library function calls. Four directly
dereference input parameters or use them directly as indices
to access memory without any boundary checking. Other
cases include not checking the validity of function pointers,
using type casting to change objects’ lifetime to static, and
potentially accessing uninitialized memory.
Of particular interest are two bad practices that lead to

potential problems. They are illustrated in Figure 5. Function
peek() returns a reference of the object at the head of a
queue, and pop() pops (removes) the head object from the
queue. A use-after-free error may happen with the following
sequence of operations (all safe code): a program first calls

Table 2.MemoryBugsCategory. Buffer: Buffer overflow; Null:
Null pointer dereferencing; Uninitialized: Read uninitialized memory;
Invalid: Invalid free; UAF: Use after free.★: numbers in () are for bugs
whose effects are in interior-unsafe functions.

Category Wrong Access Lifetime Violation TotalBuffer Null Uninitialized Invalid UAF Double free
safe 0 0 0 0 1 0 1
unsafe★ 4 (1) 12 (4) 0 5 (3) 2 (2) 0 23 (10)
safe→ unsafe★ 17 (10) 0 0 1 11 (4) 2 (2) 31 (16)
unsafe→ safe 0 0 7 4 0 4 15

peek() and saves the returned reference at line 5, then calls
pop() and drops the returned object at line 6, and finally
uses the previously saved reference to access the (dropped)
object at line 7. This potential error is caused by holding an
immutable reference while changing the underlying object.
This operation is allowed by Rust because both functions
take an immutable reference &self as input. When these
functions are called, the ownership of the queue is immutably
borrowed to both functions.

According to the program semantics, pop() actually changes
the immutably borrowed queue. This interior mutability (de-
fined in Section 2.3) is improperly written, which results
in the potential error. An easy way to avoid this error is to
change the input parameter of pop() to &mut self. When
a queue is immutably borrowed by peek() at line 5, the bor-
rowing does not end until line 7, since the default lifetime
rule extends the lifetime of &self to the lifetime of the re-
turned reference [63]. After the change, the Rust compiler
will not allow the mutable borrow by pop() at line 6.
Insight 3: Some safety conditions of unsafe code are difficult
to check. Interior unsafe functions often rely on the prepara-
tion of correct inputs and/or execution environments for their
internal unsafe code to be safe.
Suggestion 3: If a function’s safety depends on how it is used,
then it is better marked as unsafe not interior unsafe.
Suggestion 4: Interior mutability can potentially violate
Rust’s ownership borrowing safety rules, and Rust developers
should restrict its usages and check all possible safety viola-
tions, especially when an interior mutability function returns a
reference. We also suggest Rust designers differentiate interior
mutability from real immutable functions.

5 Memory Safety Issues
Memory safety is a key design goal of Rust. Rust uses a combi-
nation of static compiler checks and dynamic runtime checks
to ensure memory safety for its safe code. However, it is not
clear whether or not there are still memory-safety issues in
real Rust programs, especially when they commonly include
unsafe and interior-unsafe code. This section presents our
detailed analysis of 70 real-world Rust memory-safety issues
and their fixes.
5.1 Bug Analysis Results
It is important to understand both the cause and the effect
of memory-safety issues (bugs). We categorize our studied
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1 pub struct FILE {

2 buf: Vec<u8>,
3 }

4
5 pub unsafe fn _fdopen(...) {

6 let f = alloc(size_of::<FILE>()) as * mut FILE;
7 - *f = FILE{buf: vec![0u8; 100]};

8 + ptr::write(f, FILE{buf: vec![0u8; 100]});

9 }

Figure 6. An invalid-free bug in Redox.
bugs along two dimensions: how errors propagate and what
are the effects of the bugs. Table 2 summarizes the results in
the two dimensions introduced above.

For the first dimension, we analyze the error propagation
chain from a bug’s cause to its effect and consider how safety
semantics change during the propagation chain. Similar to
prior bug analysis methodologies [88, 89], we consider the
code where a bug’s patch is applied as its cause and the code
where the error symptom can be observed as its effect. Based
on whether cause and effect are in safe or unsafe code, we
categorize bugs into four groups: safe → safe (or simply,
safe), safe → unsafe, unsafe → safe, and unsafe → unsafe
(or simply, unsafe).

For the second dimension, we categorize bug effects into
wrong memory accesses (e.g., buffer overflow) and lifetime
violations (e.g., use after free).
Buffer overflow. 17 out of 21 bugs in this category follow the
same pattern: an error happens when computing buffer size
or index in safe code and an out-of-boundary memory access
happens later in unsafe code. For 11 bugs, the effect is inside
an interior unsafe function. Six interior unsafe functions
contain condition checks to avoid buffer overflow. However,
the checks do not work due to wrong checking logic, incon-
sistent struct status, or integer overflow. For three interior
functions, their input parameters are used directly or indi-
rectly as an index to access a buffer, without any boundary
checks.
Null pointer dereferencing.All bugs in this category are caused
by dereferencing a null pointer in unsafe code. In four of
them, null pointer dereferencing happens in an interior un-
safe function. These interior unsafe functions do not perform
proper checking as the good practices in Section 4.3.
Reading uninitialized memory. All the seven bugs in this cat-
egory are unsafe → safe. Four of them use unsafe code to
create an uninitialized buffer and later read it using safe code.
The rest initialize buffers incorrectly, e.g., usingmemcpywith
wrong input parameters.
Invalid free. Out of the ten invalid-free bugs, five share the
same (unsafe) code pattern. Figure 6 shows one such exam-
ple. The variable f is a pointer pointing to an uninitialized
memory buffer with the same size as struct FILE (line 6).
Assigning a new FILE struct to *f at line 7 ends the lifetime
of the previous struct f points to, causing the previous struct

1 pub fn sign(data: Option<&[u8]>) {

2 - let p = match data {

3 - Some(data) => BioSlice::new(data).as_ptr(),

4 - None => ptr::null_mut(),
5 - };

6 + let bio = match data {

7 + Some(data) => Some(BioSlice::new(data)),
8 + None => None,
9 + };

10 + let p = bio.map_or(ptr::null_mut(),|p| p.as_ptr());

11 unsafe {

12 let cms = cvt_p(CMS_sign(p));

13 }

14 }

Figure 7. A use-after-free bug in RustSec.

to be dropped by Rust. All the allocated memory with the
previous struct will be freed, (e.g., memory in buf at line 2).
However, since the previous struct contains an uninitialized
memory buffer, freeing its heap memory is invalid. Note
that such behavior is unique to Rust and does not happen in
traditional languages (e.g., *f=buf in C/C++ does not cause
the object pointed by f to be freed).
Use after free. 11 out of 14 use-after-free bugs happen be-
cause an object is dropped implicitly in safe code (when its
lifetime ends), but a pointer to the object or to a field of the
object still exists and is later dereferenced in unsafe code.
Figure 7 shows an example. When the input data is valid,
a BioSlice object is created at line 3 and its address is as-
signed to a pointer p at line 2. p is used to call an unsafe
function CMS_sign() at line 12 and it is dereferenced inside
that function. However, the lifetime of the BioSlice object
ends at line 5 and the object will be dropped there. The use
of p is thus after the object has been freed. Both this bug
and the bug in Figure 6 are caused by wrong understanding
of object lifetime. We have identified misunderstanding of
lifetime being the main reason for most use-after-free and
many other types of memory-safety bugs.
There is one use-after-free bug whose cause and effect

are both in safe code. This bug occurred with an early Rust
version (v0.3) and the buggy code pattern is not allowed
by the Rust compiler now. The last two bugs happen in
a self-implemented vector. Developers explicitly drop the
underlying memory space in unsafe code due to some error
in condition checking. Later accesses to the vector elements
in (interior) unsafe code trigger a use-after-free error.
Double free. There are six double-free bugs. Other than two
bugs that are safe→ unsafe and similar to traditional double-
free bugs, the rest are all unsafe → safe and unique to Rust.
These buggy programs first conduct some unsafe memory
operations to create two owners of a value. When these
owners’ lifetime ends, their values will be dropped (twice),
causing double free. One such bug is caused by

t2 = ptr::read::<T>(&t1)
which reads the content of t1 and puts it into t2 without
moving t1. If type T contains a pointer field that points to
some object, the object will have two owners, t1 and t2.
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When t1 and t2 are dropped by Rust implicitly when their
lifetime ends, double free of the object happens. A safer way
is to move the ownership from t1 to t2 using t2 = t1. These
ownership rules are unique to Rust and programmers need
to be careful when writing similar code.
Insight 4: Rust’s safety mechanisms (in Rust’s stable versions)
are very effective in preventing memory bugs. All memory-
safety issues involve unsafe code (although many of them also
involve safe code).

Suggestion 5: Future memory bug detectors can ignore safe
code that is unrelated to unsafe code to reduce false positives
and to improve execution efficiency.

5.2 Fixing Strategies
We categorize the fixing strategies of our collected memory-
safety bugs into four categories.
Conditionally skip code. 30 bugs were fixed by capturing the
conditions that lead to dangerous operations and skipping
the dangerous operations under these conditions. For ex-
ample, when the offset into a buffer is outside its boundary,
buffer accesses are skipped. 25 of these bugs were fixed by
skipping unsafe code, four were fixed by skipping interior
unsafe code, and one skipped safe code.
Adjust lifetime. 22 bugs were fixed by changing the lifetime
of an object to avoid it being dropped improperly. These
include extending the object’s lifetime to fix use-after-free
(e.g., the fix of Figure 7), changing the object’s lifetime to be
bounded to a single owner to fix double-free, and avoiding
the lifetime termination of an object when it contains unini-
tialized memory to fix invalid free (e.g., the fix of Figure 6).
Change unsafe operands. Nine bugs were fixed by modifying
operands of unsafe operations, such as providing the right
input when using memcpy to initialize a buffer and changing
the length and capacity into a correct order when calling
Vec::from_raw_parts().
Other. The remaining nine bugs used various fixing strategies
outside the above three categories. For example, one bug was
fixed by correctly zero-filling a created buffer. Another bug
was fixed by changing memory layout.
Insight 5: More than half of memory-safety bugs were fixed
by changing or conditionally skipping unsafe code, but only a
few were fixed by completely removing unsafe code, suggesting
that unsafe code is unavoidable in many cases.
Based on this insight, we believe that it is promising to

apply existing techniques [22, 79] that synthesize conditions
for dangerous operations to fix Rust memory bugs.

6 Thread Safety Issues
Rust provides unique thread-safety mechanisms to help pre-
vent concurrency bugs, and as Rust language designers put

Table 3. Types of Synchronization in Blocking Bugs.
Software Mutex&Rwlock Condvar Channel Once Other
Servo 6 0 5 0 2
Tock 0 0 0 0 0
Ethereum 27 6 0 0 1
TiKV 3 1 0 0 0
Redox 2 0 0 0 0
libraries 0 3 1 1 1
Total 38 10 6 1 4

it, to achieve “fearless concurrency” [62]. However, we have
found a fair amount of concurrency bugs. Similar to a re-
cent work’s taxonomy of concurrency bugs [80], we divide
our 100 collected concurrency bugs into blocking bugs (e.g.,
deadlock) and non-blocking bugs (e.g., data race).

This section presents our analysis on the root causes and
fixing strategies of our collected blocking and non-blocking
bugs, with a particular emphasis on how Rust’s ownership
and lifetime mechanisms and its unsafe usages impact con-
current programming.

6.1 Blocking Bugs
Blocking bugs manifest when one or more threads conduct
operations that wait for resources (blocking operations), but
these resources are never available. In total, we studied 59
blocking bugs. All of them are caused by using interior unsafe
functions in safe code.
Bug Analysis. We study blocking bugs by examining what
blocking operations programmers use in their buggy code
and how the blocking conditions happen. Table 3 summarizes
the number of blocking bugs that are caused by different
blocking operations. 55 out of 59 blocking bugs are caused
by operations of synchronization primitives, like Mutex and
Condvar. All these synchronization operations have safe
APIs, but their implementation heavily uses interior-unsafe
code, since they are primarily implemented by reusing exist-
ing libraries like pthread. The other four bugs are not caused
by primitives’ operations (one blocked at an API call only
on Windows platform, two blocked at a busy loop, and one
blocked at join() of threads).
Mutex and RwLock.Different from traditionalmulti-threaded
programming languages, the locking mechanism in Rust
is designed to protect data accesses, instead of code frag-
ments [42]. To allow multiple threads to have write accesses
to a shared variable in a safe way, Rust developers can declare
the variable with both Arc and Mutex. The lock() function
returns a reference to the shared variable and locks it. The
Rust compiler verifies that all accesses to the shared variable
are conducted with the lock being held, guaranteeing mutual
exclusion. A lock is automatically released when the lifetime
of the returned variable holding the reference ends (the Rust
compiler implicitly calls unlock() when the lifetime ends).
Failing to acquire lock (for Mutex) or read/write (for

RwLock) results in thread blocking for 38 bugs, with 30 of
them caused by double locking, seven caused by acquiring
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1 fn do_request() {

2 //client: Arc<RwLock<Inner>>

3 - match connect(client.read().unwrap().m) {

4 + let result = connect(client.read().unwrap().m);
5 + match result {

6 Ok(_) => {

7 let mut inner = client.write().unwrap();
8 inner.m = mbrs;

9 }

10 Err(_) => {}

11 };

12 }

Figure 8. A double-lock bug in TiKV.
locks in conflicting orders, and one caused by forgetting to
unlock when using a self-implemented mutex. Even though
problems like double locking and conflicting lock orders are
common in traditional languages too, Rust’s complex lifetime
rules together with its implicit unlock mechanism make it
harder for programmers to write blocking-bug-free code.
Figure 8 shows a double-lock bug. The variable client

is an Inner object protected by an RwLock. At line 3, its
read lock is acquired and its m field is used as input to call
function connect(). If connect() returns Ok, the write
lock is acquired at line 7 and the inner object is modified
at line 8. The write lock at line 7 will cause a double lock,
since the lifetime of the temporary reference-holding object
returned by client.read() spans the whole match code
block and the read lock is held until line 11. The patch is to
save to the return of connect() to a local variable to release
the read lock at line 4, instead of using the return directly as
the condition of the match code block.
This bug demonstrates the unique difficulty in knowing

the boundaries of critical sections in Rust. Rust developers
need to have a good understanding of the lifetime of a vari-
able returned by lock(), read(), or write() to know when
unlock() will implicitly be called. But Rust’s complex lan-
guage features make it tricky to determine lifetime scope. For
example, in six double-lock bugs, the first lock is in a match
condition and the second lock is in the corresponding match
body (e.g., Figure 8). In another five double-lock bugs, the
first lock is in an if condition, and the second lock is in the if
block or the else block. The unique nature of Rust’s locking
mechanism to protect data accesses makes the double-lock
problem even more severe, since mutex-protected data can
only be accessed after calling lock().
Condvar. In eight of the ten bugs related to Condvar, one
thread is blocked at wait() of a Condvar, while no other
threads invoke notify_one() or notify_all() of the same
Condvar. In the other two bugs, one thread is waiting for a
second thread to release a lock, while the second thread is
waiting for the first to invoke notify_all().
Channel. In Rust, a channel has unlimited buffer size by de-
fault, and pulling data from an empty channel blocks a thread
until another thread sends data to the channel. There are five
bugs caused by blocking at receiving operations. In one bug,
one thread blocks at pulling data from a channel, while no
other threads can send data to the channel. For another three

bugs, two or more threads wait for data from a channel but
fail to send data other threads wait for. In the last bug, one
thread holds a lock while waiting for data from a channel,
while another thread blocks at lock acquisition and cannot
send its data.
Rust also supports channel with a bounded buffer size.

When the buffer of a channel is full, sending data to the
channel will block a thread. There is one bug that is caused
by a thread being blocked when sending to a full channel.
Once. Once is designed to ensure that a global variable is only
initialized once. The initialization code can be put into a clo-
sure and used as the input parameter of the call_once()
method of a Once object. Even when multiple threads call
call_once() multiple times, only the first invocation is ex-
ecuted. However, when the input closure of call_once()
recursively calls call_once() of the same Once object, a
deadlock will be triggered. We have one bug of this type.
Insight 6: Lacking good understanding in Rust’s lifetime rules
is a common cause for many blocking bugs.
Our findings of blocking bugs are unexpected and some-

times in contrast to the design intention of Rust. For example,
Rust’s automatic unlock is intended to help avoid data races
and lock-without-unlocks bugs. However, we found that
it actually can cause bugs when programmers have some
misunderstanding of lifetime in their code.
Suggestion 6: Future IDEs should add plug-ins to highlight
the location of Rust’s implicit unlock, which could help Rust
developers avoid many blocking bugs.

Fixing Blocking Bugs. Most of the Rust blocking bugs we
collected (51/59) were fixed by adjusting synchronization
operations, including adding new operations, removing un-
necessary operations, and moving or changing existing op-
erations. One fixing strategy unique to Rust is adjusting
the lifetime of the returned variable of lock() (or read(),
write()) to change the location of the implicit unlock().
This strategy was used for the bug of Figure 8 and 20 other
bugs. Adjusting the lifetime of a variable is much harder than
moving an explicit unlock() as in traditional languages.

The other eight blocking bugs were not fixed by adjusting
synchronization mechanisms. For example, one bug was
fixed by changing a blocking system call into a non-blocking
one.

One strategy to avoid blocking bugs is to explicitly define
the boundary of a critical section. Rust allows explicit drop
of the return value of lock() (by calling mem::drop()). We
found 11 such usages in our studied applications. Among
them, nine cases perform explicit drop to avoid double lock
and one case is to avoid acquiring locks in conflicting orders.
Although effective, this method is not always convenient,
since programmers may want to use lock() functions di-
rectly without saving their return values (e.g., the read lock
is used directly at line 3 in Figure 8).
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Table 4. How threads communicate. Global: global static
mutable integer; Sync: the Sync trait; O. H.: OS or hardware resources.

Software Unsafe/Interior-Unsafe Safe MSGGlobal Pointer Sync O. H. Atomic Mutex
Servo 1 7 1 0 0 7 2
Tock 0 0 0 2 0 0 0
Ethereum 0 0 0 0 1 2 1
TiKV 0 0 0 1 1 1 0
Redox 1 0 0 2 0 0 0
libraries 1 5 2 0 3 0 0
Total 3 12 3 5 5 10 3

Suggestion 7: Rust should add an explicit unlock API of
Mutex, since programmers may not save the return value of
lock() in a variable and explicitly dropping the return value
is sometimes inconvenient.

6.2 Non-Blocking Bugs
Non-blocking bugs are concurrency bugs where all threads
can finish their execution, but with undesired results. This
part presents our study on non-blocking bugs.

Rust supports both shared memory and message passing
as mechanisms to communicate across threads. Among the
41 non-blocking bugs, three are caused by errors in message
passing (e.g., messages in an unexpected order causing pro-
grams to misbehave). All the rest are caused by failing to
protect shared resources. Since there are only three bugs
related to message passing, we mainly focus our study on
non-blocking bugs caused by shared memory, unless other-
wise specified.
Data Sharing in Buggy Code. Errors during accessing
shared data are the root causes for most non-blocking bugs
in traditional programming languages [6, 14, 17, 40, 67, 86].
Rust’s core safety rules forbid mutable aliasing, which es-
sentially disables mutable sharing across threads. For non-
blocking bugs like data races to happen, some data must have
been shared and modified. It is important to understand how
real buggy Rust programs share data across threads, since
differentiating shared variables from local variables can help
the development of various bug detection tools [21]. We
analyzed how the 38 non-blocking bugs share data and cate-
gorized them in Table 4.
Sharing with unsafe code. 23 non-blocking bugs share data
using unsafe code, out of which 19 use interior-unsafe func-
tions to share data. Without a detailed understanding of the
interior-unsafe functions and their internal unsafe mech-
anisms, developers may not even be aware of the shared-
memory nature when they call these functions.

The most common way to share data is by passing a raw
pointer to a memory space (12 in our non-blocking bugs).
A thread can store the pointer in a local variable and later
dereference it or cast it to a reference. All raw pointer oper-
ations are unsafe, although after (unsafe) casting, accesses
to the casted reference can be in safe code. Many Rust appli-
cations are low-level software. We found the second most
common type of data sharing (5) to be accessing OS system

calls and hardware resources (through unsafe code). For ex-
ample, in one bug, multiple threads share the return value of
system call getmntent(), which is a pointer to a structure
describing a file system. The other two unsafe data-sharing
methods used in the remaining 6 bugs are accessing static
mutable variables which is only allowed in unsafe code, and
implementing the unsafe Sync trait for a struct.
Sharing with safe code. A value can be shared across threads
in safe code if the Rust compiler can statically determine that
all threads’ accesses to it are within its lifetime and that there
can only be one writer at a time. Even though the sharing
of any single value in safe code follows Rust’s safety rules
(i.e., no combination of aliasing and mutability), bugs still
happen because of violations to programs’ semantics. 15 non-
blocking bugs share data with safe code, and we categorize
them in two dimensions. To guarantee mutual exclusion, five
of them use atomic variables as shared variables, and the
other ten bugs wrap shared data using Mutex (or RwLock).
To ensure lifetime covers all usages, nine bugs use Arc to
wrap shared data and the other six bugs use global variables
as shared variables.
Insight 7: There are patterns of how data is (improperly)
shared and these patterns are useful when designing bug de-
tection tools.

Bug Analysis. After a good understanding of how Rust pro-
grammers share data across threads, we further examine the
non-blocking bugs to see how programmers make mistakes.
Although there are many unique ways Rust programmers
share data, they still make traditional mistakes that cause
non-blocking bugs. These include data race [14, 67, 86], atom-
icity violation [6, 17, 40], and order violation [18, 41, 85, 89].
We examine how shared memory is synchronized for all

our studied non-blocking bugs. 17 of them do not synchro-
nize (protect) the shared memory accesses at all, and the
memory is shared using unsafe code. This result shows that
using unsafe code to bypass Rust compiler checks can se-
verely degrade thread safety of Rust programs. 21 of them
synchronize their shared memory accesses, but there are is-
sues in the synchronization. For example, expected atomicity
is not achieved or expected access order is violated.

Surprisingly, 25 of our studied non-blocking bugs happen
in safe code. This is in contrast to the common belief that safe
Rust code can mitigate many concurrency bugs and provide
“fearless concurrency” [62, 81].
Insight 8: How data is shared is not necessarily associated
with how non-blocking bugs happen, and the former can be in
unsafe code and the latter can be in safe code.
There are seven bugs involving Rust-unique libraries, in-

cluding two related tomessage passing.Whenmultiple threads
request mutable references to a RefCell at the same time,
a runtime panic will be triggered. This is the root cause of
four bugs. A buggy RefCell is shared using the Sync trait
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1 impl Engine for AuthorityRound {

2 fn generate_seal(&self) -> Seal {

3 - if self.proposed.load() { return Seal::None; }

4 - self.proposed.store(true);
5 - return Seal::Regular(...);

6 + if !self.proposed.compare_and_swap(false, true) {

7 + return Seal::Regular(...);

8 + }

9 + return Seal::None;
10 }

11 }

Figure 9. A non-blocking bug in Ethereum.
for two of them and using pointers for the other two. Rust
provides a unique strategy where a mutex is poisoned when
a thread holding the mutex panics. Another thread waiting
for the mutex will receive Err from lock(). The poisoning
mechanism allows panic information to be propagated across
threads. One bug is caused by failing to send out a logging
message when poisoning happens. The other two bugs are
caused by panics when misusing Arc or channel.
Insight 9: Misusing Rust’s unique libraries is one major root
cause of non-blocking bugs, and all these bugs are captured by
runtime checks inside the libraries, demonstrating the effec-
tiveness of Rust’s runtime checks.
Interior Mutability. As explained in Section 2.3, interior
mutability is a pattern where a function internally mutates
values, but these values look immutable from outside the
function. Improper use of interior mutability can cause non-
blocking bugs (13 in total in our studied set).
Figure 9 shows one such example. AuthorityRound is a

struct that implements the Sync trait (thus an Authority-
Round object can be shared bymultiple threads after declared
with Arc). The proposed field is an atomic boolean variable,
initialized as false. The intention of function generate_
seal() is to return a Seal object only once at a time, and
the programmers (improperly) used the proposed field at
lines 3 and 4 to achieve this goal. When two threads call
generate_seal() on the same object and both of them fin-
ish executing line 3 before executing line 4, both threads will
get a Seal object as the function’s return value, violating
the program’s intended goal. The patch is to use an atomic
instruction at line 6 to replace lines 3 and 4.

In this buggy code, the generate_seal() function modi-
fies the immutably borrowed parameter &self by chang-
ing the value of the proposed field. If the function’s in-
put parameter is set as &mut self (mutable borrow), the
Rust compiler would report an error when the invocation of
generate_seal() happens without holding a lock. In other
words, if programmers use mutable borrow, then they would
have avoided the bug with the help of the Rust compiler.
There are 12 more non-blocking bugs in our collected bug
set where the shared object self is immutably borrowed by
a struct function but is changed inside the function. For six
of them, the object (self) is shared safely. The Rust com-
piler would have reported errors if these borrow cases were
changed to mutable.

Rust programmers should carefully design interfaces (e.g.,
mutable borrow vs. immutable borrow) to avoid non-blocking
bugs. With proper interfaces, the Rust compiler can enable
more checks, which could report potential bugs.
Insight 10: The design of APIs can heavily impact the Rust
compiler’s capability of identifying bugs.
Suggestion 8: Internal mutual exclusion must be carefully
reviewed for interior mutability functions in structs implement-
ing the Sync trait.
Fixes of Non-Blocking Bugs. The fixing strategies of our
studied Rust bugs are similar to those in other programming
languages [37, 80]. 20 bugs were fixed by enforcing atomic
accesses to shared memory. Ten were fixed by enforcing or-
dering between two shared-memory accesses from different
threads. Five were fixed by avoiding (problematic) shared
memory accesses. One was fixed by making a local copy of
some shared memory. Finally, two were fixed by changing
application-specific logic.
Insight 11: Fixing strategies of Rust non-blocking (and block-
ing) bugs are similar to traditional languages. Existing auto-
mated bug fixing techniques are likely to work on Rust too.

For example, cfix [26] and afix [25] patch order-violation
and atomicity-violation bugs. Based on Insight 11, we believe
that their basic algorithms can be applied to Rust, and they
only need some implementation changes to fit Rust.

7 Bug Detection
Our empirical bug study reveals that Rust’s compiler checks
fail to cover many types of bugs. We believe that Rust bug
detection tools should be developed and our study results
can greatly help these developments. Unfortunately, existing
Rust bug detectors (Section 2.4) are far from sufficient. From
our experiments, the Rust-clippy detector failed to detect any
of our collected bugs. The Miri dynamic detector can only
report bugs when a test run happens to trigger problematic
execution. Moreover, it has many false positive bug reports.
Rust’s debug mode can help detect double locks and integer
overflows. But similar to Miri, it also needs a test input to
trigger buggy execution.
This section discusses how our bug study results can be

used to develop bug detection tools. We also present two new
bug detectors we built for statically detecting Rust use-after-
free and double-lock bugs. Note that although the results of
these bug detectors are promising, they are just our initial
efforts in building Rust bug detectors. Our intention of them
is to demonstrate the value and potential of our study results,
and they are far from perfect. We encourage researchers and
practitioners to invest more on Rust bug detection based on
our initial results.

7.1 Detecting Memory Bugs
From our study ofmemory bugs, we found thatmanymemory-
related issues are caused bymisuse of ownership and lifetime.
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Thus, an efficient way to avoid or detect memory bugs in
Rust is to analyze object ownership and lifetime.
IDE tools.Misunderstanding Rust’s ownership and lifetime
rules is common (because of the complexity of these rules
when used in real-world software), and it is the main cause
of memory bugs. Being able to visualize objects’ lifetime
and owner(s) during programming time could largely help
Rust programmers avoid memory bugs. An effective way of
visualization is to add plug-ins to IDE tools, for example, by
highlighting a variable’s lifetime scope when the mouse/cur-
sor hops over it or its pointer/reference. Programmers can
easily notice errors when a pointer’s usage is outside the
lifetime of the object it points to and avoid a use-after-free
bug. Highlighting and annotating ownership operations can
also help programmers avoid various memory bugs such as
double-free bugs and invalid-free bugs (e.g., Figure 6).
Static detectors. Ownership/lifetime information can also
be used to statically detect memory bugs. Based on our study
results in Section 5, it is feasible to build static checkers to
detect invalid-free, use-after-free, double-free memory bugs
by analyzing object lifetime and ownership relationships. For
example, at the end of an object’s lifetime, we can examine
whether or not this object has been correctly initialized to
detect invalid-free bugs like Figure 6.
As a more concrete example, we have built a new static

checker based on lifetime/ownership analysis of Rust’s mid-
level intermediate representation (MIR) to detect use-after-
free bugs like Figure 7. We chose MIR to perform the analysis
because it provides explicit ownership/lifetime information
and rich type information. Our detector maintains the state
of each variable (alive or dead) by monitoring when MIR
calls StorageLive or StorageDead on the variable. For each
pointer/reference, we conduct a “points-to” analysis to main-
tain which variable it points to/references. This points-to
analysis also includes cases where the ownership of a vari-
able is moved. When a pointer/reference is dereferenced, our
tool checks if the object it points to is dead and reports a bug
if so.
In total, our detector found four previously unknown

bugs [60] in our studied applications. Our tool currently
reports three false positives, all caused by our current (un-
optimized) way of performing inter-procedural analysis. We
leave improving inter-procedural analysis to future work.
Overall, the results of our initial efforts in building static

bug detectors are encouraging, and they confirm that own-
ership/lifetime information is useful in detecting memory
bugs that cannot be reported by the Rust compiler.
Dynamic detectors. Apart from IDE tools and static bug
detectors, our study results can also be used to build or
improve dynamic bug detectors. Fuzzing is a widely-used
method to detect memory bugs in traditional programming
languages [1, 5, 57, 70, 84, 87]. Our study in Section 5 finds

that all Rust memory bugs (after the Rust language has been
stabilized in 2016) involve unsafe code (Insight 4). Instead of
blindly fuzzing all code, we recommend future fuzzing tools
to focus on unsafe code and its related safe code to improve
their performance (Suggestion 5).

7.2 Detecting Concurrency Bugs
There are many ways to use our study results of concurrency
bugs in Section 6 to build concurrency bug detectors. We
now discuss how our results can be used and a real static
double-lock detector we built.
IDE tools. Rust’s implicit lock release is the cause of several
types of blocking bugs such as the double-lock bug in Figure 8
(Insight 6). An effective way to avoid these bugs is to visualize
critical sections (Suggestion 6). The boundary of a critical
section can be determined by analyzing the lifetime of the
return of function lock(). Highlighting blocking operations
such as lock() and channel-receive inside a critical section
is also a good way to help programmers avoid blocking bugs.
IDE tools can also help avoid non-blocking bugs. For ex-

ample, to avoid bugs caused by improper use of interior
mutability, we can annotate the call sites of interior mutabil-
ity functions and remind developers that these functions will
change their immutably borrowed parameters. Developers
can then closely inspect these functions (Suggestion 8).
Static detectors. Lifetime and ownership information can
be used to statically detect blocking bugs. We built a double-
lock detector by analyzing lock lifetime. It first identifies all
call sites of lock() and extracts two pieces of information
from each call site: the lock being acquired and the variable
being used to save the return value. As Rust implicitly re-
leases the lock when the lifetime of this variable ends, our
tool will record this release time. We then check whether or
not the same lock is acquired before this time, and report a
double-lock bug if so. Our check covers the case where two
lock acquisitions are in different functions by performing
inter-procedural analysis. Our detector has identified six pre-
viously unknown double-lock bugs [52–54] in our studied
applications (and no false positives). They have been fixed
by developers after we reported them.
Ownership information can also help static detection of

non-blocking bugs. For example, for bugs caused by misuse
of interior mutability like the one in Figure 9, we could per-
form the following static check. When a struct is sharable
(e.g., implementing the Sync trait) and has a method im-
mutably borrowing self, we can analyze whether self is
modified in the method and whether the modification is un-
synchronized. If so, we can report a potential bug. On the
other hand, we do not need to analyze a function that muta-
bly borrows self, since the Rust compiler will enforce the
function to be called with a lock, guaranteeing the proper
synchronization of its internal operations (Insight 10).
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Dynamic detectors. Dynamic concurrency-bug detectors
often need to track shared variable accesses. Being able to
differentiate thread-local variables from shared variables
can help lower memory and runtime overhead of dynamic
bug detectors’ tracking. Our empirical study results identify
the (limited) code patterns of data sharing across threads in
Rust (Insight 7). Dynamic detectors can use these patterns
to reduce the amount of tracking to only shared variables.

We also find that misusing Rust libraries is a major cause
of non-blocking bugs, which can be effectively caught by
the Rust runtime (Insight 9). Thus, future dynamic tools
can focus on generating inputs to trigger such misuses and
leverage Rust’s runtime checks to find bugs.

8 Discussion
After presenting our study results, findings, insights, and
suggestions, we now briefly discuss further implications of
our work and some of our final thoughts.
Safe and unsafe code. Most of this study and previous
theoretical works [27, 28] center around Rust’s safe and
unsafe code and their interaction. We use our understanding
from this work to provide some hints to answer some key
questions in this regard.

1) When and why to use unsafe code?Minimizing the use of
unsafe code is generally considered as a good Rust program-
ming practice, as confirmed by our study. However, there
can be good reasons to use unsafe code. First, there are many
external libraries and certain unsafe std library functions
that do not readily have their safe versions. Instead of writ-
ing new safe code, programmers may want to directly use
existing unsafe functions. Second, there are certain low-level
hardware and OS interfaces that can only be accessed by
unsafe code. Third, programmers may want to write unsafe
code for performance reasons. Finally, our study shows that
programmers sometimes want to label some code unsafe
to maintain code consistency across different versions or
to label a small piece of code as unsafe to prevent labeling
future unsafe behavior that can happen at more code pieces.

2) How to properly encapsulate unsafe operations? In cases
where programmers have to or desire to write unsafe code,
we suggest them to take extra care to encapsulate their un-
safe code. We believe that proper encapsulation of unsafe
operations should come from guaranteeing preconditions and
postconditions. Different unsafe operations have different con-
ditions to meet. Memory-related unsafe operations should
have precondition checks that ensure the validity of memory
spaces (e.g., pointing to valid addresses) and meet owner-
ship requirements (e.g., memory space not owned by others).
Concurrency-related unsafe operations should meet tradi-
tional synchronization conditions. Calling unsafe functions
like external non-Rust libraries should meet both precondi-
tions (checking inputs) and postconditions (checking return

values). One difficulty in encapsulating unsafe operations is
that not all conditions can be easily checked. They call for
more advanced bug detection and verification techniques.
3) How to change unsafe code to safe code? Depending on

the type of unsafe operations, there are various ways to
change unsafe code to safe code. For example, Rust’s imple-
mentation can replace (unsafe) calls to external non-Rust
libraries. Atomic instructions can replace (unsafe) read/write
to shared variables. Certain Rust std safe functions can re-
place unsafe std functions.
Language and tool improvement. Although Rust has al-
ready gone through years of evolution, our study still hints
at a few Rust language features that could be revisited and
improved. For example, we found that Rust’s implicit unlock
feature is directly related to many blocking bugs. Although
its intention is to ease programming and improve safety, we
believe that changing it to explicit unlock or other critical-
section indicators can avoid many blocking bugs.

More important, our study urges (and helps with) the de-
velopment of tools to help prevent or detect bugs in Rust. We
suggest two directions of tool building. The first is to add IDE
plugins to hint Rust programmers about potential bug risks
and visualize code scope that requires special attention. For
example, an alternative method to the above unlock problem
is to keep the implicit unlock feature but add IDE plugins
to automatically highlight the scope of critical sections. The
second is to build bug detection tools that are tailored for
Rust. Our bug study results and the two detectors we built
are a good starting point for this direction.
Values beyond Rust. Our study can benefit the community
of other languages in several ways. First, other languages
that adopt the same designs as Rust can directly benefit
from our study. For example, languages like Kotlin [31] also
use lifetime to manage resources and can benefit from our
lifetime-related study results. Similarly, languages that have
ownership features (e.g., C++11 std::unique_ptr) can ben-
efit from our ownership-related results. Second, Rust adopts
several radical language designs. Our study shows how pro-
grammers adapt (or fail to adapt) to these new concepts
over time. Future language designers can learn from Rust’s
success and issues when designing new languages.

9 Conclusion
As a programming language designed for safety, Rust pro-
vides a suite of compiler checks to rule out memory and
thread safety issues. Facing the increasing adoption of Rust
in mission-critical systems like OSes and browsers, this paper
conducts the first comprehensive, empirical study on unsafe
usages, memory bugs and concurrency bugs in real-world
Rust programs. Many insights and suggestions are provided
in our study. We expect our study to deepen the understand-
ing of real-world safety practices and safety issues in Rust
and guide the programming and research tool design of Rust.
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