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Abstract—There is a huge demand to ensure the compliance
of smart contracts listed on blockchain platforms to safety and
economic standards described in natural languages. Today, manual
efforts in the form of auditing are commonly used to achieve this
goal. ML-based automated techniques have the promise to alleviate
human efforts and the resulting monetary costs. However, unlike
other domains where ML techniques have had huge successes,
no systematic ML techniques have been proposed or applied to
smart contract auditing. We present SC-Bench, the first dataset for
automated smart-contract auditing research. SC-Bench consists of
5,377 real-world smart contracts running on Ethereum, a widely
used blockchain platform, and 15,975 violations of standards
on Ehereum called ERCs. Out of these violations, 139 are
real violations programmers made. The remaining are errors
systematically injected by us to reflect the violations of different
ERC rules. We evaluate SC-Bench using GPT-4 by prompting it
with both the contracts and ERC rules. In addition, we manually
identify each violated rule and the corresponding code site (i.e.,
oracle) and prompt GPT-4 with the information asking for a
True-or-False question. Our results show that without the oracle,
GPT-4 can only detect 0.9% violations, and with the oracle, it
detects 22.9% violations. These results show the potential room for
improvement in ML-based techniques for smart-contract auditing.

Index Terms—Smart Contract Auditing, Dataset

I. INTRODUCTION

Ethereum [35], [13] is a decentralized, open-source
blockchain platform that has become the de facto for running
decentralized applications like smart contracts [14], [17]. To
standardize smart contract implementation, Ethereum Request
for Comments (ERCs) have been developed. Each ERC
provides a set of formal standards and is typically written in
natural languages [31]. For example, ERC20 [33] defines the
rules for fungible tokes — digital assets that are interchangeable.
ERCs are essential in the Ethereum ecosystem, offering
a common framework that developers must follow when
implementing smart contracts. Violations of ERC rules can
result in interoperability issues, contract failures, and financial
loss. Moreover, tokens that don’t comply with ERCs may be
delisted from exchanges, as many exchanges require ERC
compliance for listing [15].

Despite the importance of adhering to ERC standards,
developers often find it challenging to comply fully due to
the complexity of the rules and their contract code. ERC
standards consist of numerous rules, and this number continues
to grow as new standards are introduced. For the three ERCs
discussed in this work, there are 132 rules. These rules are
presented in various formats, with some outlined as code

comments and others explained in natural language paragraphs.
Meanwhile, smart contract code is typically intricate, often
spanning thousands of lines across multiple files. Some details
may be hidden within complex caller-callee relationships, while
others might involve objects and functions coded by different
developers. This combination of ERC complexity and the
intricacies of smart contracts makes it exceedingly difficult
for programmers to ensure full compliance with ERC rules.
Consequently, ERC violations are common in real-world smart
contracts [8].

To detect ERC violations, today’s common practice heavily
relies on human efforts. Automated, program-analysis-based
checkers for ERC rules do exist [9], [24], but they fail to
detect complex violations because of many ERC rules’ non-
structured, natural-language-based definitions. As a result, smart
contracts commonly undergo human auditing, provided by
specialized services with security experts [6], [28], [25], [3],
[20], [1], [8]. Auditing services are not only costly but also slow.
For example, we examined the history of 30 smart contracts
that were submitted for manual auditing on a platform called
Ethereum Commonwealth Security Department [8]. We found
that each contract only has an average of 260 lines of code but
is audited for ten days with an estimated cost of $500. Clearly,
manual auditing is not a scalable approach.

A promising, scalable approach for automated smart-contract
auditing is to leverage large language models (LLMs), both
because of LLMs’ success in domains like program gener-
ation [30] and bug fixing [21], [38] and because of a fair
amount of ERC rules’ natural-language descriptions. To develop
LLM-based techniques (e.g., fine-tuning, few-shot learning)
for smart contract auditing, an important step is to construct
quality datasets. Unfortunately, no smart contract datasets exist
for ERC rule checking and fixing. Traditional program bug
datasets [29], [19] cannot be used for smart-contract auditing,
as unlike ERC rules, compiler errors and program runtime
errors have well-defined, structured definitions.

To drive research and practices in smart-contract auditing
and to assist real users with their auditing tasks, we release
SC-Bench, the first dataset of real-world smart contracts and
their ERC-rule violations. SC-Bench consists of 15,975 ERC
violations and 5,377 real-world smart contracts, collected
from etherscan.io [18], polygonscan.com [26], and Ethereum
Commonwealth Security Department [8]. 139 violations from
30 contracts are real-world ERC violations we collect and
inspect. As real violations are rarely published, we build



program analysis techniques and inject 15,836 violations into
5,347 contracts according to 88 ERC rules.

We evaluate SC-Bench using GPT-4 with two different
approaches. First, we prompt GPT-4 with the contract to be
inspected along with the full rule set of the corresponding
ERC. Our results show that GPT-4 detects only 29% of real
violations and 0.6% of injected violations. To assess how GPT-4
might perform with additional oracle information, we manually
identify the violated ERC rules and the specific code sites
causing the violations. We then prompt GPT-4 with this precise
information and ask it a True-or-False question. In this case,
GPT-4 successfully detects 42.8% of real violations and 22.8%
of injected violations. The improved detection rates highlight
the potential room for machine learning-based techniques in
automating smart contract audits.

Overall, SC-Bench goes beyond being a key contribution
to Ethereum smart contract auditing. Other software auditing
and verification tasks, such as ensuring the compliance of API
usage rules, can potentially use SC-Bench’s contract dataset,
its violation dataset, or its methodologies for evaluation.

We have released our dataset, results, and source code of
our injecting scripts, all of which can be found at https://github.
com/charlesxsh/scbench.

II. BACKGROUND

This section provides background on Ethereum, smart
contracts, ERCs, and ERC violations.

A. Ethereum and Smart Contracts
Ethereum is a blockchain platform where developers can

create and deploy smart contracts to build decentralized
applications (dApps) [35], [13]. Both Ethereum users and
smart contracts have their own unique Ethereum addresses,
which allow them to send and receive Ether (the native
cryptocurrency of Ethereum) and interact with smart contracts
to carry out complex transactions for a variety of purposes.
Ethereum has grown into a thriving digital economy ecosystem,
with a total market capitalization exceeding $200 billion at
the time of writing and more than one million transactions
processed daily, amounting to over $4 billion in volume [4],
[2]. Smart contracts are central to Ethereum’s success, driving
the majority of transactions and powering key functionalities
such as cryptocurrencies, NFTs, and decentralized finance
(DeFi) [33], [12], [10].

Smart contracts are commonly written in the Solidity
programming language [7], [23]. An example of a smart
contract is presented in Figure 1. The contract has two
contract fields in lines 2 and 3, _balances (line 2) and
_allowances (line 3), tracking the number of tokens owned
by each address and the tokens approved by the first dimension
for manipulation by the second dimension, respectively. The
function transferFrom() in lines 6–10 facilitates the
transfer of amount tokens from one address to another.
transferFrom() can be called by any Ethereum user or
contract after the contract is deployed, while the internal
function _transfer() (lines 11–17) is restricted to calls
from the same address.

1 contract ERC20 {
2 mapping(address => uint256) _balances;
3 mapping(address => mapping(address => uint256))

_allowances;
4 event Transfer(address indexed _from, address indexed

_to, uint256 _value);
5

6 function transferFrom(address from, address to,
uint256 amount) public returns (bool) {

7 + _allowances[from][msg.sender] -= amount;
8 _transfer(from, to, amount);
9 return true;

10 }
11 function _transfer(address from, address to, uint256

amount) internal {
12 require(from != address(0), "transfer from address

zero");
13 require(to != address(0), "transfer to address zero"

);
14 _balances[from] -= amount;
15 _balances[to] += amount;
16 emit Transfer(from, to, amount);
17 }
18 }

Fig. 1: An ERC20 rule violation that can be exploited to steal
tokens. (The code is simplified for illustration purpose.)

B. Ethereum Request for Comment (ERC)

ERCs are technical specifications that define the requirements
for implementing smart contracts. Those requirements aim to
ensure compatibility across different contracts, applications,
and platforms. By standardizing the contract implementations,
ERCs help strengthen and promote the growth of the Ethereum
ecosystem [16], [15], [32].

Typically, an ERC begins with a brief explanation of its
motivation. For instance, ERC20 [33] aims to establish a
standard token interface that can be used by applications
such as wallets and decentralized exchanges. After the mo-
tivation, an ERC specifies all the necessary public functions
and events by outlining their parameters, return values, and
any optional attributes for the parameters. It also provides
implementation requirements in the form of plain text or
code comments for each function or event declaration. For
example, besides the requirements for the function API and
return value generation, ERC20 includes the following rules
for the transferFrom() function (as shown in Figure 1),
which mandate emitting a Transfer event, verifying that
the message sender has been approved to manage the token
owner’s tokens (and throwing an exception if not), treating the
transfer of zero tokens in the same way as any other amount,
and requiring an event to be emitted even when transferring
zero tokens.

C. ERC Rule Violations

An ERC rule violation occurs when a smart contract
is expected to follow a specific rule, but certain aspects
of the contract do not. Figure 1 illustrates an instance of
an ERC20 rule violation in a real smart contract, where
the transferFrom() function fails to check whether the
caller has the necessary authorization to transfer the specified
amount of tokens. This verification is required by ERC20 to

https://github.com/charlesxsh/scbench
https://github.com/charlesxsh/scbench


TABLE I: How ERC rules are distributed across different
error-injection methods. (“Uncovered”: rules whose violations
cannot be injected by our designed error-injection methods.)

ID Check API Value Call Return Logging Uncovered Total
ERC20 1 9 1 0 9 5 7 32
ERC721 12 10 0 2 4 10 22 60
ERC1155 7 6 0 2 0 7 18 40

Sum 20 25 1 4 13 22 47 132

ensure financial security. As a result of this oversight, anyone
could potentially steal tokens from any address by invoking
transferFrom() to transfer tokens to their own address.
The patch shown in line 7 offers a fix for this violation. It
employs a two-dimensional map, _allowances, to track the
number of tokens the “from” address allows msg.sender to
manage. If the subtraction operation in this line results in an
underflow, an exception is triggered, causing the transaction
to terminate. This fix ensures that the message caller cannot
transfer tokens unless they have enough privilege.

Violating ERC rules can lead to significant financial losses
and unpredictable contract behavior. For example, ERC721
requires the onERC721Received() function to be called
for each token transfer when the recipient is a contract.
Additionally, it mandates that the caller must check if the return
value of onERC721Received() matches a specific magic
number. These two rules ensure that the recipient contract is
capable of properly handling the transferred tokens. If tokens
are sent to a contract that cannot handle them, they can become
permanently locked within the contract. This issue was first
reported in 2017 on Ethereum Reddit, resulting in the loss of
$10,000 worth of tokens at the time, and it has since led to
millions of dollars in losses [11]. In short, ensuring contracts
comply with ERC rules is essential to protect financial assets
and maintain proper contract functionality.

D. Today’s Auditing Practices

The common practice for detecting ERC rule violations today
relies on manual auditing, often provided by paid services [6],
[28], [25], [3], [20], [1], [8]. One such service is the Ethereum
Commonwealth Security Department [8], where users submit
smart contracts for auditing by filing a GitHub issue. The
service then manually audits the submitted contracts and
provides feedback through the issue.

To reduce the manual workload and associated costs, some
automated tools have been developed using static program
analysis. For example, Slither offers specific checkers (i.e.,
slither-check-erc [9]) that verify whether a given contract
complies with the corresponding ERC standards for 11 ERCs.
However, these tools have limited functionality. They primarily
focus on ensuring the presence of required functions and events,
confirming that these elements are correctly declared, and veri-
fying that functions trigger the necessary events. Unfortunately,
they are unable to check more advanced conditions, such as
verifying whether the message caller has enough privilege to
transfer tokens. To our knowledge, no machine learning-based

TABLE II: How many errors are injected by different error-
injection methods.

# of Violations # of Cont.Check API Value Call Return Logging Total
ERC20 566 4605 736 0 5930 3612 15449 5211
ERC721 158 72 0 15 48 33 326 110
ERC1155 18 30 0 4 9 0 61 26

Total 742 4707 736 19 5987 3645 15836 5347

automated auditing techniques have been proposed yet. We
hope that the release of SC-Bench can foster a new line of
research in this regard.

III. SC-BENCH

This section outlines the process of building the dataset and
provides some relevant statistics.

A. Construction

We collect real-world smart contracts from Ethereum Com-
monwealth Security Department [8], etherscan.io [18], and
polygonscan.com [26]. As the purpose of SC-Bench is for
evaluating automated ERC-rule checking, we include ERC
rule violations of these collected contracts in SC-Bench using
two approaches. First, we manually inspect a set of real smart
contracts and identify all their ERC violations. This process is
time-consuming, resulting in a limited number of violations. To
address this, we perform automated error injection into a large
number of real-world smart contracts, significantly increasing
the number of violations. These two types of violations serve to
validate each other and help ensure that the evaluated techniques
demonstrate consistent performance.

Manual Inspection. We manually analyze 30 ERC20 contracts
obtained from the Ethereum Commonwealth Security Depart-
ment [8], selecting the most recent 30 audit requests that meet
the following criteria: 1) they contain Solidity source code, 2)
they have been approved by Solidity developers (as indicated
by the “approved” tag), 3) they exhibit ERC rule violations,
and 4) all contracts and the related Solidity code are within
the same contract file. On average, each contract file contains
260.9 lines of Solidity code. Through detailed examination,
we identify 139 ERC rule violations. Of these, 27 violations
present a clear method for exploitation that can lead to financial
losses, and we classify them as having a high-security impact.
Another 48 violations result from incorrect implementation of
required functionalities, but there is no apparent way to exploit
these for financial gain. Therefore, we consider them to have a
medium-security impact. The remaining 64 violations involve
failures in generating necessary logs and are categorized as
having a low-security impact.

Error Injection. To augment the limited manual-inspected
real violations, we perform error injection to 5,347 real-world
smart contract source code using the following methodology.
We design six error injection methods corresponding to 85 ERC
rules, resulting in a total of 15,836 ERC violations. Table I
shows the number of rules each method covers.



1 contract ERC1155 {
2 function safeBatchTransferFrom(address from, address

to, uint256[] memory ids, uint256[] memory amounts,
bytes memory data) public {

3 require(from==_msgSender()||isApprovedForAll(from,
_msgSender()), "not token owner or approved");

4 _safeBatchTransferFrom(from,to,ids,amounts,data);
5 }
6

7 function _safeBatchTransferFrom(address from, address
to, uint256[] memory ids, uint256[] memory amounts,
bytes memory data) internal {

8 require(ids.length==amounts.length, "ids and amounts
length mismatch");

9 - require(to!=address(0), "transfer to address 0");
10 address operator = _msgSender();
11 for (uint256 i = 0; i < ids.length; ++i) {
12 uint256 id = ids[I];
13 uint256 amount = amounts[I];
14 _balances[id][from] -= amount;
15 _balances[id][to] += amount;
16 }
17 emit TransferBatch(operator,from,to,ids,amounts);
18 }
19 }

Fig. 2: Violation injection of a condition-check rule. (Line 9
is deleted to perform the violation injection.)

We focus on contracts in three ERC standards, ERC20 [33],
ERC721 [12], and ERC1155 [27], for two reasons. First, these
ERCs are significant and have numerous crucial financial
applications. For instance, there are over 450,000 ERC20
tokens on the Ethereum platform [5], many of which have
market capitalizations exceeding $1 billion (e.g., USDT [37],
SHIB [36], Binance USD [34]). Second, these three standards
are among the most mature ERCs and inspire subsequent ERCs,
making their rules representative of rules in other ERCs. As
shown in Table I, these three ERCs specify 132 rules. Our error
injection methods can cover 85 of them. We do not include the
rest either because they are not clearly specified (e.g., “throw
if any other error” in ERC1155) or because they require more
complex static analysis or injection methods.

We collect contracts in these three ERCs from ether-
scan.io [18] and polygonscan.com [26]. These two platforms
are the most popular analytics platforms for Ethereum and its
sidechain Polygon [22], respectively. As shown in Table II, we
collected 5,211 contracts that are supposed to target ERC20,
110 for ERC721, and 26 for ERC11551. On average, each
of these contracts contains 477.5 lines of code. We collect
more contracts targeting ERC20 than ERC721 and ERC1155
contracts due to the significantly higher prevalence of ERC20
in practice.

We randomly inject one to three errors in each contract
based on the fit of rules to the contract to construct ERC
violations. To inject an error, we first convert each input smart
contract source-code file into its abstract syntax tree (AST). We
then randomly select a rule and apply the corresponding error-
injection method to the AST. After modifying the AST, we

1We mainly rely on a contract’s name or the name of a base contract
inherited by the contract to determine whether the contract implements a
particular ERC.

1 contract ERC20 {
2 mapping(address => uint256) _balances;
3

4 function balanceOf(address account) public view returns
(uint256) {

5 - return _balances[account];
6 + return _balances[account]+827;
7 }
8 }

Fig. 3: Violation injection of a return rule. (Line 5 is replaced
with line 6 to perform the violation injection.)

convert it back into source code. We perform error injections
on ASTs because it is easier to conduct static program analysis
and modify code on ASTs than to work directly with the
source code. Table II shows the number of errors injected by
each method. Finally, we verify that the modified source code
compiles without errors using the Solidity compiler. Below,
we discuss each error injection method in detail.

Violations of Condition-Check Rules. ERCs mandate certain
public functions to perform condition checks on their
input parameters or callers’ addresses (i.e., msg.sender).
Sometimes, these checks validate the input parameters. For
example, ERC721 disallows the input parameter of function
ownerOf() to be zero. More crucially, these checks ensure
the caller has the permission to perform an action. For
instance, ERC20’s transfer(address _to, uint256
_value) function sends tokens in the amount specified by
its second parameter from the caller’s account to the receiver,
whose address is the first parameter. ERC20 requires verifying
that the caller has enough tokens (an amount greater than or
equal to the second parameter) and throwing an exception if
this condition is not met.

Many of these rules are enforced using require statements.
To inject an error of this type into a function, we remove all
require statements that check the parameter required by the
rule as part of their conditions. Figure 2 illustrates an example
of how a rule violation is injected in this way. ERC1155 re-
quires that function safeBatchTransferFrom() “MUST
revert if ‘_to’ is the zero address,” where _to is the second
parameter of the function. Violating this rule would result in a
permanent loss of the transferred tokens. The violation injec-
tion method begins with the safeBatchTransferFrom()
function in line 2, as the rule applies to this function. It ignores
the require statement in line 3, since its conditions do
not involve the _to parameter. The method then proceeds to
analyze the callee function _safeBatchTransferFrom()
defined in lines 7–18. Similar to line 3, the method retains
the require statement in line 7. However, it removes the
require statement in line 9, as this one checks the _to
parameter. None of the remaining lines contain require
statements, so they are left unchanged. As shown in Figure 2,
the modified contract can still be compiled by the Solidity
compiler, but it allows safeBatchTransferFrom() to
transfer tokens to the zero address, thus violating the rule.

Violations of API Rules. Each ERC specifies a set of re-



Fig. 4: Average contract size. Fig. 5: Average error number in
a contract.

Fig. 6: How errors distribute across dif-
ferent security impacts.

quired function call APIs that all contracts following the
ERC must include. To inject an error for a required API, we
identify and remove the function’s definition, including both its
declaration and its function body. To ensure the contract can
still be compiled, we also remove all call sites of the function.

Violations of Return-Value Rules. ERCs explicitly define
how return values should be computed for certain
function call APIs. For example, ERC20 requires
that allowance(address _owner, address
_spender) returns the token amount that _owner
allows _spender to withdraw. As return-value rules apply
to only four data types, integer, Boolean, address, and string,
we design four distinct error-injection methods for each of
them. We add a random integer to an integer return value,
flip a Boolean return value, replace an address return with a
random address, and change a string return value to an empty
string if it is not already empty or replace an empty return
string with a random string.

Figure 3 illustrates an example of injecting a violation of
a rule that specifies how to generate a integer return value.
According to ERC20, the function balanceOf(address
_owner) must return “the account balance of the another
account with address _owner.” The contract in Figure 3 adheres
to this rule, as shown in line 5. To inject a violation, we
modify the return value by adding a random number to it, as
demonstrated in line 6.

Violations of Value-Update Rules. Fields or state variables
in a contract represent its state. Some ERC rules spec-
ify how a public function should update a state variable.
For example. contracts following ERC20 rules use a two-
dimensional mapping to record the number of tokens the
first key allows the second key to withdraw. The pub-
lic function approve(address _spender, uint256
_value) sets the number of tokens (specified by the second
parameter _value) that the caller’s address (i.e., the message
sender) permits the first address parameter _spender to with-
draw. Therefore, ERC20 mandates that approve(address
_spender, uint256 _value) updates the appropriate
field of the two-dimensional mapping with _value. To
inject an error of this type into a function, we remove all

assignments to the corresponding state variable within the
function. The challenge is that ERCs do not prescribe how
to name state variables, as these variables are only accessible
within a contract. Consequently, given a rule of this type,
different contracts are likely to use different names for the
corresponding state variable. Fortunately, ERCs require a getter
function to return its value for most state variables, and this
getter function has the same name across all contracts for each
ERC. This requirement enables us to locate the correct state
variable automatically and perform the error injection.

Violations of Function-Call Rules. Some ERC rules specify
that a function must be called after a certain event. For instance,
ERC721 requires onERC721Received() to be called if
tokens are sent to a contract. To inject an error for a call rule
about function A() inside function B(), we simply remove
all call sites of A() in B().

Violations of Logging Rules. ERCs require specific events
to be emitted within certain functions or after particular code
actions for logging purposes. To inject such an error that
violates one of those rules within a function, we remove all
code statements within the function that emit the corresponding
event.

B. Dataset Summary

Our dataset contains 15,975 ERC rule violations. Among
them, 139 are introduced by the real-world programmers, while
the remaining 15,836 are injected by us. 39 errors made by
real-world programmers cannot be replicated using the error-
injection methods. These include 28 errors that violate the
rule that transferring zero tokens must be treated the same as
transferring non-zero tokens and 11 errors that violate the rule
that the transfer() function must throw an exception if
the sender does not have enough balance.

There are 5,377 contracts in our dataset, including 30
originally ERC-violating contracts and 5,347 contracts with
injected errors. On average, each contract contains 476.29 lines
of code and 2.97 errors. Among these contracts, 5,241 contracts
implement ERC20, 110 contracts implement ERC721, and 26
contracts implement ERC1155. ERC20 has the most contracts
since it is the most popular ERC.



1 The following code is the implementation of <ERC_type>.
The <ERC_type> rules are

2 attached below the code. Does this implementation violate
<ERC_type> rules?

3 Return a JSON array containing JSON objects with ’rule’
and ’function’ as keys,

4 indicating the specific rule content that is violated and
the function where the

5 violation resides.
6 code:"""
7 <code>
8 """
9 <ERC_type>:

10 <ERC_content>

Fig. 7: The full-rule prompting template. (For a concrete
prompt, <ERC_type> could be ERC20, ERC721, and ERC1155,
<code> is replaced with the whole contract code, and
<ERC_content> is replaced with the whole ERC document.)

Figures 4 and Figure 5 compare errors from two sources
on their contract sizes and the average number of errors per
contract. On average, an originally violating contract contains
260.9 lines of source code, with a standard deviation of 198,
whereas a contract with injected errors contains 477.5 lines
of code, with a standard deviation of 385. Each originally
violating contract contains 4.83 errors on average, and each
modified contract contains 2.96 injected errors on average.

The security impact of the errors is tied to the methods used
for error injection. A total of 3,645 errors arise from failures
to emit events, resulting in contract activities going unlogged.
These are considered to have a low-security impact. Among
the 2,230 high-security impact errors, a significant number are
caused by missing required checks to verify sufficient privileges
for performing specific actions. The lack of these checks can
be easily exploited, leading to financial losses (e.g., stolen
tokens, as illustrated in Figure 1). These errors are categorized
as having a high-security impact. Additionally, failures to call
required functions or incorrect updates to state variables can
also have a high-security impact. The remaining 9,961 errors
cause contracts to behave unpredictably for users, although they
may not directly result in financial loss, and are classified as
having a medium-security impact. All these errors are injected
through API, Value, Call, and Return methods.

Figure 6 shows the distribution of errors across different
security impacts for the two sources. For errors identified
through manual inspection, the proportions of high-impact,
medium-impact, and low-impact errors are 9.4%, 29.2%, and
61.3%, respectively. For injected errors, the proportions are
14.1%, 62.9%, and 23.0%, respectively.

IV. EVALUATION

This section presents our evaluation results of SC-Bench
using GPT-4. Our experiments are designed to answer the
following research questions: 1) Coverage: How many errors
can GPT-4 detect? and 2) Accuracy: How accurate are GPT-4’s
detection results?

1 Whether the following smart contract <contract_name>
violate ERC rule <rule> for function <function_sig>?
Answer YES or NO.

2 Code:"""
3 <code>
4 """

Fig. 8: The oracle prompting template. (For a concrete prompt,
<contract_name>, <rule>, <function_sig>, and <code> are
replaced with the name of the smart contract, the rule’s natural
language description, the declaration of the function, and the
code of the function and all its callees.)

1 [
2 {
3 "rule": "approve: Allows _spender to withdraw

from your account multiple times, up to the _value
amount. If this function is called again it overwrites
the current allowance with _value.",

4 "function": "approve function is missing in the
contract"

5 },
6 {
7 "rule": "Approval: MUST trigger on any successful

call to approve(address _spender, uint256 _value).",
8 "function": "Approval event is missing in the

contract"
9 }

10 ]

Fig. 9: The GPT response for the contract in Figure 1 with
full-rule prompting.

A. Methodology

We evaluate SC-Bench using GPT-4 via the OpenAI API
access. We set its temperature value to zero to ensure that
GPT-4’s results are deterministic, enabling others to replicate
our findings. Below, we detail our evaluation methodology.

For each auditing request, we ask GPT whether a contract
violates any ERC rules, and if so, which function causes the
violation. To instruct GPT on ERC rules, we adopt in-context
learning by providing GPT ERC rules in addition to the contract
under inspection. We use two methodologies to provide ERC
rules. The first presents an ERC’s official document with all
rules to GPT, as shown in Figure 7. After GPT returns its
output, we compare both the GPT-generated violating rules
and violating functions to the ground truth. We report when
both are correct, when only the violating rule is correct, and
when neither is correct.

The second method assumes oracle knowledge of which
specific ERC rule(s) a contract violates and the function where
the violation happens. So, it directly provides both to GPT
and asks GPT a simple True-or-False question, as shown by
Figure 8. A True result is correct (True Positive), while a
False is wrong (False Negative). For this method, we manually
select rules and violation code sites based on either the original
contract violations or our injected errors.

Presenting whole ERC rules with the contract serves as a
baseline, while hand-picked rules can be viewed as an oracle.
Note that we do not provide more advanced methodology such



TABLE III: Experimental results for full-rule prompting. ((x, y, z): x cases where both the reported rule and the reported
violating function are correct, y cases where only the reported rule is correct, z cases where neither the rule nor the function is
correct. “-”: all numbers are zeros.)

ERC Manual Inspection Error Injection TotalHigh Medium Low Total High Medium Low Total
ERC20 (16,0,40) (21,0,36) (5,2,6) (42,2,82) (3,0,3659) (83,5,7381) (16,0,533) (102,5,11573) (144, 7, 11655)
ERC721 - - - - (0,0,108) (0,0,195) (0,0,17) (0,0,320) (0,0,320)
ERC1155 - - - - (0,0,4) (0,0,31) (0,0,8) (0,0,43) (0,0,43)

Total (16,0,40) (21,0,36) (5,2,6) (42,2,82) (3,0,3771) (83,5,7607) (16,0,558) (102,5,11936) (144, 7, 12018)

TABLE IV: Experimental results for oracle prompting. ((x, y): x true positives, and y false negatives. “-”: all numbers are
zeros.)

ERC Manual Inspection Error Injection TotalHigh Medium Low Total High Medium Low Total
ERC20 (3,24) (29,19) (30,34) (62,77) (739,1273) (2037,7788) (823,2789) (3599,11850) (3661,11927)
ERC721 - - - - (2, 185) (1,105) (0,33) (3,323) (3,323)
ERC1155 - - - - (4,27) (0,30) - (4,57) (4,57)

Total (3,24) (29,19) (30,34) (62,77) (745,1485) (2038,7923) (823, 2822) (3606, 12230) (3668,12307)

as Chain-of-Thoughts [39], as the focus of this work is to
present our collected dataset and demonstrate its potential
use. Future research can explore the room for accuracy
improvements.

B. Experimental Results

Full-Rule Prompting. As shown in Table III, using full-rule
prompting, GPT-4 successfully detects 144 errors (0.9% of the
15,975 errors), providing both the correct violated rules and
the violating functions. For another 7 errors (0.04%), GPT-4
only reports the correct rule but fails to identify the correct
location. For the remaining 15,824 errors (99%), GPT-4 does
not provide any correct information.

For instance, Figure 9 illustrates GPT-4’s response when
analyzing the contract in Figure 1 using full-rule prompting.
GPT-4 accurately identifies two rule violations and the functions
responsible for them. Since the contract does not include
the function approve(address _spender, uint256
_value), it is considered violating both that the function
should overwrite the current allowance with _value and
that the function should emit the Approval event. How-
ever, GPT-4 fails to recognize that the contract fails to
ensure the transferFrom() function properly validates
its caller’s privileges, missing a critical violation with a
high security impact. In another example, when asked to
audit the contract in Figure 3, GPT-4 fails to detect that the
balanceOf(address account) function does not return
the expected value as required by ERC20.

We further separate the results between errors identified
through manual inspection and those that are injected. For
manually inspected errors, GPT-4 correctly reports both the
violated rule and the violating function in 30% of the 139 errors.
For injected errors, this proportion is 0.6%. The difference is
probably due to that the injected errors are more challenging
to identify than those introduced by programmers.

For errors in different security impacts, we notice GPT-4
has a very high detection rate when pinpointing manually
introduced errors with a high security impact, with a detection
rate to be 59.2%. For errors in other security impacts, the
detection rate ranges from 0.13% to 43.8%.

We then examine whether GPT-4’s ability to detect violations
varies across different ERCs. We found that the detection
rate for errors violating an ERC20 rule (0.9%) is higher
than for ERC721 (0%) and ERC1155 (0%). Notably, GPT-
4 does not identify any errors in contracts implementing
ERC721 and ERC1155. This discrepancy is likely because
there are significantly more ERC20 contracts, meaning GPT-
4 has probably been trained on a larger dataset of ERC20
contracts.

Oracle Prompting. Table IV shows the results with oracle
prompting. Under this setting, GPT-4’s performance signifi-
cantly improves, with the detection rate increasing from 0.9%
to 22.9%. The improvement varies depending on the source
of the errors. For manually inspected errors, the detection rate
rises from 30% to 44.6%, while for injected errors, it increases
from 0.6% to 22.8%. This boost in detection is mainly due to
breaking down a complex task into smaller, more manageable
tasks, allowing GPT-4 to focus on each one individually. Those
results show that simple prompting techniques even with oracle
still have a large room for accuracy improvements.

For example, when presenting both the source code
of the transferFrom(address from, address to,
uint256 amount) function and its callee from lines 6
to 17 in Figure 1, along with the rule description stating
that the function “should throw unless the _from account
has deliberately authorized the sender of the message via
some mechanism,” and asking GPT-4 whether the rule is
violated, GPT-4 correctly answers yes. In another example,
when showing the balanceOf() function from lines 4 to
7 in Figure 3, along with the rule that the function “returns



the account balance of another account with address _owner,”
and asking GPT-4 to analyze if the rule is violated, it correctly
responds yes.

V. DISCUSSION AND CONCLUSION

We present SC-Bench, the first dataset for smart contract
auditing. SC-Bench contains 5,377 real-world smart contracts
and 15,975 ERC violations, with two sources of violations:
real-world errors and injected errors. Our evaluation of SC-
Bench with GPT-4 shows that while ML-based techniques are
promising, there is still huge room for improvement.

Notably, SC-Bench has certain limitations. For example, we
only include the three most important ERC standards and
only inject one to three errors per contract. Both adding
more ERC standards and supporting more types of error
injection are feasible — something we leave for future work.
Another limitation is the imbalance of real-world violations and
injected errors. As real-world violations are rarely reported, we
believe the imbalance cannot be easily improved. One possible
approach is to instruct ML models to create real-world-like
errors.
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