
Demo: VRLifeTime -- An IDE Tool to Avoid Concurrency and
Memory Bugs in Rust

Ziyi Zhang
USTC, Pennsylvania State University

Boqin Qin
BUPT, Pennsylvania State University

Yilun Chen
HoneycombData Inc

Linhai Song∗
Pennsylvania State University

Yiying Zhang
University of California, San Diego

ABSTRACT
As a young programming language designed for systems software
development, Rust aims to provide safety guarantees like high-level
languages and performance efficiency like low-level languages.
Lifetime is a core concept in Rust, and it is key to both safety
checks and automated resource management conducted by the Rust
compiler. However, Rust’s lifetime rules are very complex. In reality,
it is not uncommon that Rust programmers fail to infer the correct
lifetime, causing severe concurrency and memory bugs. In this
paper, we present VRLifeTime, an IDE tool that can visualize lifetime
for Rust programs and help programmers avoid lifetime-related
mistakes. Moreover, VRLifeTime can help detect some lifetime-
related bugs (i.e., double locks) with detailed debugging information.
A demo video is available at https://youtu.be/dA-PRYhYyoo.
ACM Reference Format:
Ziyi Zhang, Boqin Qin, Yilun Chen, Linhai Song, and Yiying Zhang. 2020.
Demo: VRLifeTime -- An IDE Tool to Avoid Concurrency and Memory Bugs
in Rust. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’20), November 9–13, 2020, Virtual Event, USA.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3372297.3420024

1 INTRODUCTION
Rust is a young programming language designed to develop low-
level software. Its main design goal is to provide the same runtime
performance as C/C++, while ruling out safety issues in C/C++
through strict compile-time checks. In recent years, Rust has gained
increasing popularity. According to surveys on Stack Overflow,
Rust was the most beloved language in the last four years. It has
already been used to implement many safety-critical software sys-
tems, ranging from OSes [10, 13] to browsers [12] and blockchain
applications [4, 7].

The core of Rust’s safety checks is two concepts: ownership
and lifetime. The basic rule only permits each value to have one
owner variable and a value is dropped (or freed) when its owner’s
lifetime ends. Rust extends the basic rule with a set of rules to allow
the ownership to be moved and borrowed, while still guaranteeing
memory safety and thread safety. Rust’s safety rules essentially
∗Linhai Song was supported by NSF grant CNS-1955965.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’20, November 9–13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7089-9/20/11.
https://doi.org/10.1145/3372297.3420024

1 fn do_request(client: &LeaderClient) {

2 //client.inner: Arc<RwLock<Inner>>

3 - match connect(client.inner.read().unwrap().m) {

4 + let result = connect(client.inner.read().unwrap().m);
5 + match result {

6 Ok(_) => {...}

7 Err(_) => {

8 if let Err(e) = client.reconnect() {...}

9 }

10 }

11 }

12
13 impl LeaderClient {

14 fn reconnect(&self) {

15 let mut inner = self.inner.write().unwrap();
16 ...

17 }

18 }

Figure 1: A double-lock bug in TiKV.

ensure that all accesses to a value are within the value’s lifetime
and prohibit the combination of aliasing and mutability. All these
rules are checked and enforced at compilation, so that Rust can
achieve the performance as good as C/C++ during runtime.

Besides safety, Rust’s lifetime mechanism is also widely used
to achieve automated resource management, since all resources
allocated to a variable are automatically freed when the variable
ends its lifetime. For example, there is no explicit Unlock() in
Rust. A Mutex.Lock() function call returns a reference of the
shared variable protected by the mutex. All accesses to the shared
variable are conducted using the reference, so that the Rust compiler
can verify all accesses happen while the lock is held. The lock is
automatically released by the Rust compiler (through implicitly
calling Unlock()), when the reference variable ends its lifetime.

However, Rust proposes many new language features, making
its lifetime rules very complex. In the real world, it is difficult for
Rust programmers to correctly infer Rust variables’ lifetime scopes.
Thus, some allocated resources are held longer or shorter than
programmers’ expectations, leading to severe concurrency and
memory bugs, e.g., double locks, use-after-free bugs.

A double-lock deadlock in TiKV is shown in Figure 1. Vari-
able client’s inner field is an Inner object protected by a
RwLock. Line 3 acquires the read lock and uses field m to call func-
tion connect(). If connect() returns Err (line 7), function
client.reconnect() is called at line 8, which in turn acquires
the write lock at line 15. However, the lifetime of the reference re-
turned by client.inner.read() doesn’t end until the end of
the match block at line 10, so that the read lock is held until line 10.
Therefore, a double-lock bug happens when function connect()
return Err. The fix is to save the return of connect() to a local

https://youtu.be/dA-PRYhYyoo
https://doi.org/10.1145/3372297.3420024
https://doi.org/10.1145/3372297.3420024


Figure 2: VRLifeTime’s
Architecture

Figure 3: VRLifeTime’s IDE Display

variable result and use it as the condition of the match block
at line 5. After fixing, the read lock is released at line 4.

The bug in Figure 1 demonstrates the difficulty in reasoning
the lifetime of a Rust variable and writing correct Rust programs.
Programmers have to know where the implicit Unlock() is called
by the Rust compiler is related to the lifetime of the reference re-
turned by Mutex.lock() (or RwLock.read()), how the Rust
compiler computes the lifetime for a variable if the variable is used
in the condition of a match block, and whether using a variable to
invoke a function can impact its lifetime. With the complex syn-
tax in Rust, bugs caused by misunderstanding Rust’s lifetime rules
widely exist in the real world [9].

In this paper, we present VRLifeTime, an IDE tool that can visu-
alize the lifetime scope for a user-selected variable. We implement
VRLifeTime as a plugin for Visual Studio Code [5]. Besides the life-
time visualization, we also integrate the double-lock detector built
in our previous work [9] into VRLifeTime. For each double lock
identified by the detector, VRLifeTime highlights the corresponding
locking operations and also provides a detailed explanation. The
difference between our previous paper [9] and this paper is that
our previous paper conducted a bug study and implemented two
bug detectors for Rust, while this paper focuses on highlighting
Rust variables’ lifetime scopes to avoid lifetime-related bugs.

In summary, we make the following contributions.
• First, we conduct Rust-specific program analysis to accu-
rately compute the lifetime scope for a given variable.

• Second, we provide a user-friendly GUI with comprehensive
information for programmers to understand identified issues.

2 RELATEDWORK
Rust uses LLVM as its compiler backend. Thus, many static and dy-
namic bug detectors designed for C/C++ [2, 14] can also be applied
to Rust. However, we anticipate these tools are not effective at iden-
tifying lifetime-related bugs in Rust, since those bugs are usually
caused by Rust’s unique language features. The Rust team builds
and releases two detectors. They either cover limited buggy code
patterns [11] or depend on user-provided inputs [6], and neither of
them aims to detect concurrency bugs.

There are existing techniques to visualize lifetime in Rust [1,
3]. However, their goals are to help developers understand errors
reported by the Rust compiler and help developers change code
to pass Rust’s compiler checks, while VRLifeTime aims to warn
potential concurrency and memory bugs that cannot be detected
by the Rust compiler (e.g., Figure 1).

3 OVERVIEW
An overview of VRLifeTime’s architecture is shown in Figure 2.
When a programmer saves the Rust source code file she is editing,
VRLifeTime runs the Rust compiler to generate the MIR of the
Rust file. When the programmer selects a piece of source code in
the IDE, VRLifeTime first identifies which variable’s lifetime the
programmer wants to analyze, and then computes the lifetime scope
for the variable through analyzing the generated MIR. VRLifeTime
also invokes the double-lock detector to analyze the computed
lifetime scope for potential bugs. In the end, the computed lifetime
scope and the identified bugs are visualized in the IDE.

Figure 3 shows howVRLifeTime visualizes the bug in Figure 1. Af-
ter the read locking operation (line 316) is selected, VRLifeTime col-
ors the selection in yellow and colors the computed lifetime scope of
the temporary reference returned by the read locking in pink. Func-
tion client.reconnect() is called inside the lifetime scope,
so that all its instructions are considered as inside the lifetime scope
and are also colored in pink. Since client.reconnect() ac-
quires the write lock and causes the double lock, VRLifeTime puts
a tilde under the invocation of client.reconnect() to warn
the programmer. If the programmer moves his mouse onto the
invocation, a window is popped up to explain the warning (i.e., a
potential double lock) and provide more information (i.e., the write
lock acquisition at line 348).

4 IMPLEMENTATION
We implement VRLifeTime as a plugin for Visual Studio Code (VS-
Code). VRLifeTime takes the generated MIR and a user-selected
piece of code as input, and computes the visualization informa-
tion in four steps: parsing MIR, pinpointing the selected variable,



computing the lifetime scope, and searching critical operations. We
only present the details for the first three steps in this paper, since
the last step is discussed in our previous paper [9].
Parsing MIR.We parse the generated MIR and build the control
flow graph (CFG) for each function in it. Given a program element
(e.g., variable, instruction), MIR provides its rendering location,
including the row number and the range of column numbers. We
record the rendering information to interact with VSCode. Given
two variables a and b, if a is moved to b (indicated by keyword
move), we consider a and b are equivalent. We compute equivalent
variable sets for each function. We also compute the points-to set
for each pointer variable and reference variable.
Pinpointing the selected variable.We expect a user to select a
few characters in the edited Rust file. A particular event in VSCode
can provide the row number and the range of the columns for
the selected characters. VRLifeTime identifies the selected variable
as the one with the smallest column range among all variables
whose rendering locations can cover the selected characters. For a
temporary variable, VRLifeTime considers its rendering location
the same as the operation creating the variable.
Computing the lifetime scope. MIR leverages two special in-
structions StorageLive and StorageDead to mark the life-
time start and the lifetime end for each variable respectively. We
define the lifetime scope of a variable as a set of instructions. Each
instruction is along a path on CFG starting from the variable’s
StorageLive and ending at the variable’s StorageDead. If a
variable has equivalent variables (i.e., variables with the moving
relationship), we compute the union of lifetime scopes for all its
equivalent variables and use the union as the lifetime scope.

To handle a function call, we consider the following two cases.
First, if a function is called in the lifetime scope of a variable and
the variable is not moved into the function, we consider all the
instructions executed by the function directly or indirectly as in
the lifetime scope of the variable. Second, if the variable is moved
into the function, then the variable’s lifetime ends right after the
call site in the caller function, and we continue to analyze the callee
function to extend the variable’s lifetime scope.

For a pointer variable, we visualize the lifetime of the object it
points to. The reason is that a pointer variable is in a primitive
type and its own lifetime scope has nothing to do with memory
bugs or concurrency bugs, while inspecting whether a pointer is
used inside the lifetime of the object it points to can avoid potential
use-after-free bugs. Given a reference variable, we visualize its
own lifetime, since the Rust compiler guarantees that all references
live within the lifetime of its owner variable and using a reference
cannot cause any use-after-free bug.

5 EXPERIMENTAL EVALUATION
Methodology. Our experiment is designed to understand the pro-
portion of real-world double locks VRLifeTime can detect (coverage)
and how accurate VRLifeTime’s detection results are (accuracy). In
our previous work, we collected 70 real-world concurrency bugs
from popular Rust applications and libraries [9]. Among them, 30
are double locks. We apply VRLifeTime to the 30 bugs and inspect
how many of them can be detected to understand the coverage.
For accuracy, we apply VRLifeTime to the latest versions of the

Rust applications and libraries used in our previous work [9]. We
examine all reported results to count true bugs and false positives.
Coverage. For 21 (out of 30) collected double locks, the Rust com-
piler can compile the buggy application version or we successfully
inject the bug into a version that can be compiled. We apply VRLife-
Time to the 21 bugs directly. VRLifeTime detects 18 bugs and fails
to report the other three. For the remaining nine bugs, the compiler
cannot compile their buggy versions and we cannot do the bug
injection either, because their buggy functions have already been
removed. We cannot apply VRLifeTime to the nine bugs directly.
Thus, we conduct a manual study on them and find that VRLifeTime
can detect four of them. Overall, VRLifeTime can detect a relatively
large portion of real-world double-lock deadlocks.

There are two possible reasons why a bug is not detected by
VRLifeTime. First, our alias analysis is not precise, and we fail to
identify the same lock is acquired twice for four bugs. Second,
our call-graph analysis is not good enough (e.g., unable to handle
function pointers). There are four bugs due to this reason.
Accuracy. After applying VRLifeTime to the latest application ver-
sions, VRLifeTime detects six previously unknown bugs without
reporting any false positive. We report all the detected bugs to
developers. Developers have fixed all of them [8].

6 CONCLUSION AND FUTUREWORK
Facing the increasing adoption of Rust in developing safety-critical
software systems, we build VRLifeTime, an IDE tool that can vi-
sualize the lifetime scope for a user-selected variable and help
programmers avoid lifetime-related bugs. VRLifeTime also has the
capability to detect double-lock deadlocks, while providing detailed
information to facilitate the bug validation and fixing. In the future,
we plan to extend VRLifeTime to detect other types of bugs and
conduct a user study to understand which debugging information
is more valuable.

REFERENCES
[1] David Blaser. 2019. Simple Explanation of Complex Lifetime Errors in

Rust. https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-
method/pm/documents/Education/Theses/David_Blaser_BA_Report.pdf.

[2] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-coverage Tests for Complex Systems Programs.
In OSDI ’08.

[3] Dietler Dominik. 2018. Visualization of Lifetime Constraints in Rust.
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-
method/pm/documents/Education/Theses/Dominik_Dietler_BA_report.pdf.

[4] Facebook. 2019. Libra’s mission is to enable a simple global currency and financial
infrastructure that empowers billions of people. https://developers.libra.org/

[5] Microsoft. 2019. Visual Studio Code - Code Editing. Redefined. https://code.
visualstudio.com/.

[6] Miri. 2019. An interpreter for Rust’s mid-level intermediate representation. https:
//github.com/rust-lang/miri

[7] Parity-ethereum. 2019. The Parity Ethereum Client. https://www.parity.io/
ethereum/

[8] Boqin Qin. 2020. ethcore/client: fix deadlock caused by double-read lock. https:
//github.com/openethereum/openethereum/pull/11766

[9] Boqin Qin, Yilun Chen, Zeming Yu, Linhai Song, and Yiying Zhang. 2020. Un-
derstanding Memory and Thread Safety Practices and Issues in Real-World Rust
Programs. In PLDI ’20.

[10] Redox. 2019. The Redox Operating System. https://www.redox-os.org/
[11] Rust-clippy. 2019. A bunch of lints to catch common mistakes and improve your

Rust code. https://github.com/rust-lang/rust-clippy
[12] Servo. 2019. The Servo Browser Engine. https://servo.org/
[13] Tock. 2019. Tock Embedded Operating System. https://www.tockos.org/
[14] Wei Zhang, Chong Sun, and Shan Lu. 2010. ConMem: detecting severe concur-

rency bugs through an effect-oriented approach. In ASPLOS ’10.

https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/David_Blaser_BA_Report.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/David_Blaser_BA_Report.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/Dominik_Dietler_BA_report.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/Dominik_Dietler_BA_report.pdf
https://developers.libra.org/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://github.com/rust-lang/miri
https://github.com/rust-lang/miri
https://www.parity.io/ethereum/
https://www.parity.io/ethereum/
https://github.com/openethereum/openethereum/pull/11766
https://github.com/openethereum/openethereum/pull/11766
https://www.redox-os.org/
https://github.com/rust-lang/rust-clippy
https://servo.org/
https://www.tockos.org/

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Implementation
	5 Experimental Evaluation
	6 Conclusion and Future Work
	References

