Performance Diagnosis for
Inefficient Loops

Linhai Song! and Shan Lu?
FireEye, Inc.
2University of Chicago



What are Performance Problems?

* Definition of Performance Problems (PPs):

— Implementation mistakes causing inefficiency

 An example

4
{ v @i o0

int count = 0;

o DO G .

if(n->name == aNode->name)
count ++;

return count;
} //Mozilla#477564




What are Performance Problems?

* Definition of Performance Problems (PPs):

— Implementation mistakes causing inefficiency

 An example

¢
{ n: (n9)>(n8)>(n7)>n2)> . (n1)

int count = 0;
for (n =aNode; n; n = aNode->prev) count:
if(n->name == aNode->name) @ @ @ @ @
count ++;
return count;
} //Mozilla#t477564




What are Performance Problems?

* Definition of Performance Problems (PPs):

— Implementation mistakes causing inefficiency

 An example

Bugzilla@Mozilla New Account | Log i mozilla

Home New Browse Search B tretv) Reporis  product Dashboard

Session restore hangs/not responding with high CPU on large forg

RESOLVED FIXED in Firefox 3.6a1

any checkboxes T

Status (regression bug RESOLVED as FIXED)
Product: Firefox

Component:  Session Restore]

Tracking (Depends on: 1 bug, &
Version: Trunk
Target: Firefox 3.6a1 R oo
Keywords: commonvissue-, perf, regression, verified19.1 Dependency &
Points: -

ssh_xph_generate(node_t * aNode

Bug Flags: blocking-firefox.6+

blocking19.1.1-

Firefox Tracking Flags (status1.9.2 betat-fixed, blocking19.1 - status1.9.1 3-fixed)

Details (Whiteboard: workaround: comment 0, URL)

1 — . Attachments (7 attachments)
I I l I I -— test case (1000 checkboxes) petails
V4 8years ago Ginn Chen
10651K8, text/hml.

test case (1000 checkboxes with IDs) Details
8years ago Simon Binz

for (n =aNode; n; n = aNode->prev)

8years ago Simon Binz

if(n->name == aNode->name) .

01U
379.99 K&, application/x7

don't (completely) res

I I 8years ago Simon Biinz!
. 1378, patch
) 4000 checkboxes
8years ago Jason Frey
27130K8, text/html

return count;

Description - 8 years ago

s | Diff | Splinter Review
): approval1 913+

Details

Bottom ¢

Togs  View

With a web page with a large form, say 1000 checkboxes, it takes more than 10 seconds 1o [oad the page.

. Since the default sesslonstore.Interval Is 10 seconds, I is really hard to operate with the page. (L. every click will take another more than 10 seconds hang.)

o other . but it is focus on form data and can be reproduced with a single tab.

Testcase attached.



Fighting PPs is Important

* PPs widely exist in production run software
— 5 to 60 Mozilla PPs are fixed each month

* PPs are getting more important
— Hardware is not getting faster (per-core)
— Software is getting more complex
— Energy saving is getting more urgent

eeeeee




Performance Diagnosis

* |dentifying the causes of inefficient execution
— Different from testing & bug detection
— In-house and on-line diagnosis

“\j

Diagnosis




Diagnosing PPs is Challenging

* Three criteria for diagnosis tools
— Coverage: handle a good portion of PPs
— Accuracy: accurately tell

* Which code regions are inefficient
* Why they are inefficient

— Performance: low run-time overhead

Coverage Accuracy Performance

7




State of the Art

* No existing tools can satisfy the three criteria

|
Prof 4(@ ;%:Q

B Detection

.0
.0
.
““““““
“““
| 2 .
[ 2 .
“““
%)

Coverage Accuracy Performance

g




Statistical Debugging

[1] Linhai Song, Shan Lu. Statistical Debugging for
Real-World Performance Problems. In OOPSLA’2014.

Input:

Statistical Debugging|i]

Good I Bad I

< U

Program(

| for( @ ){

Symptom:

-
g g
)

Y

Predicates

%3 taken @

) |Statistical| ]
Mode!

¥ not-taken (&)

Need to improve

N/

Inefficient Loops (45/65)

if( % )

white(...){ | | ferel-1

49 @
o func();

}




LDoctor

* A tool(kit) targets inefficient loops

Targets of LDoctor
Statistical Debugging|i] N/
puts | Good | | 5o | — Inefficient Loops (45/65)

Sa * ) func(...){

if( % ){ while( ... ) {
Programy o for( I - ﬁ 177N ?@
(e > = == 7Y -]
— Predicates Model .
 predgicates | } } func();
D%

% ¥ not-taken (&) }
Symptom: @

10



Contributions

* A root-cause taxonomy for inefficient loops
— Guide the design of automated diagnosis tools
— Resultless vs. redundant

* LDoctor: a toolkit to diagnose inefficient loops
— Hybridize static and dynamic analysis
— |Identify inefficiency root causes

* With high coverage, high accuracy, and low overhead

11



Overview

Root-cause Taxonomy
LDoctor Design
Evaluation of LDoctor
Conclusion

12



ervie

* Root-cause Taxonomy

13



What Type of Taxonomy We Need?

* Inclusive: covering most/all inefficient loops

* General: Not application specific

* Actionable: helpful to design fix

14



Root-Cause Taxonomy

- =
TTTRE T

15




Resultless Loops

* Produce no side effects

Inefficient
Loops

16



Resultless O*

* Never produce results in any iteration

Inefficient
Loops

0* Loop Instance
A
4 \

Q Iteration without Side Effect

Q lteration with Side Effect

17



Resultless 0*1°7

* Only produce results in the last iteration

Inefficient
Loops

0*1? Loop Instance

O OO = O @

Q Iteration without Side Effect

Q lteration with Side Effect

. Resultless

18



Resultless [0]1]*

 May produce results in each iteration

Inefficient
Loops

[0|1]* Loop Instance

19



Resultless 1*

* Produce results in almost all iterations

Inefficient
Loops

1* Loop Instance

20



Redundant Loops

* Produce already-available results

Inefficient
Loops

Redundancy




Cross-loop Redundancy

Loop Instance 8

A
n: (n8)>(n7)>
Loop Instance 9 Inefficient

A

char * ssh_xph_generate(node_t * aNode) Redundancy

{

Loops

int count = 0;

for (n = aNode; n; n = aNode->prev)

if(n->name == aNode->name)

count ++;
Buggy Loop

. Redundancy

return count;
} //Mozilla#477564

22



Cross-iteration Redundancy

Inefficient
Loops

Loop Instance

n |
( \
OOR(x (0~ (0(%) Redundancy

@ Ilteration with same side effect |

Cross-
iteration

23

. Redundancy



Root-Cause Taxonomy

Inefficient
Loops
% Redundancy
Cross-loo Cross
P iteration

. Resultless . Redundancy

24



* LDoctor Design

25



Design Principles

 Taxonomy guided design

* Focused checking

e Static-dynamic hybrid analysis

Static \)ynamic

26




C.-L. Redundancy Analysis (I)

Identify Side-effect char * ssh_xph_generate(node_t * aNode)
Instructions b { Source Instruction
Static Slicing to int count =0;
_ Source Instructions | for (n = aNode;/n; n = aNode->prev)
" Record & Compare N H(n->name|==|aNode->name
Source Value | count ++; ——"

\ Mozilla#477564
}// called for e\ Side-effect Instruction

27



C.-L. Redundancy Analysis (I1)

Identify Side-effect )
Instructions

<

Static Slicing to

) Static
s Source Instructions " >

Record & Compare N
Source Value .

Q Unsampled instances

O Sampled Instances

28



* LDoctor Design

e Evaluation of LDoctor

29



Implementation & Evaluation

* Implementation using LLVM-3.4.2
* Experimental setting

— Evaluating 39 bugs from two benchmark suite
— Applying on look rank list from SD
— Sampling rate: 1/100 (C.L.) & 1/1000 (C.1.)

* Evaluation metrics

Coverage Accuracy Performance

3




Coverage & Accuracy

BugliD

Mozilla347306

Coverage

Mozilla490%4
Mozilla35294
Mozilla477564
MySQL27287
MySQL15811
Apache32546
Apache37184
Apache29742
Apache34464
Apached7223

Reported
Root Cause

V

< < < < < < < < < < <

Fix
Suggestion
v

< < < < [ < XX < < <<

False
Positive

31



Coverage & Accuracy

BugliD

Mozilla347306
Mozilla416628
Mozilla490742
Mozilla35294
Mozilla477564
MySQL27287
MySQL15811
Apache32546
Apache37184
Apache29742
Apache34464
Apached7223

Reported
Root Cause

V

< < < < < < < < < < <

Fix
Suggestion
v

Accuracy

\4

< < < < < < XX < <

False
Positive

32



Performance

BugiD LDoctor w/o sampling
Resultless  C-LR. C-IR. C-LR. C-IR.
Mozilla347306 1.00 1.18 1.18 356 662
Mozilla416628 1.00 1.04 1.02 73.5 113
MySQL27287 1.05 1.00 - 264 881
MySQL15811 - 1.00 - 414 1088
GCC46401 1.00 1.00 1.00 33.8 60.0
GCC1687 - / 1.01 / 224
GCC27733 1.00 / 1.00 / 19.4
GCC8805 - 1.00 1.00 3.89 4.36
GCC21430 - 1.04 1.02 165 255
GCC12322 - 1.04 1.00 26.5 25.8

33



Conclusions

* A root-cause taxonomy for inefficient loops

Our taxonomy are general and specific!

* Aseries of static-dynamic hybrid analysis

Achieve good coverage, accuracy and performance

34



Thanks a lot!

PR s

" and tie hinks
5
s




Question?

Inefficient
Loops

% Redundancy

Cross-loo -
P iteration

. Resultless . Redundancy

36






Resultless Analysis

. with side effect

O without side effect

=

Identify Side-effect ™\
Instructions

0*
0*1? [0]1]* | > static
1*

\
r

N

Instrument
Counters S

Calculate Resultless )
) Dynamic
Ratio

[o]1]*




