Learning from Big Malwares

Linhai Song, Heqing Huang, Wu Zhou, Wenfei Wu, and Yiying Zhang

Combating Malwares is Critical

- Definition of malwares
 - A variety of hostile or intrusive software
- Malwares are common and severe
 - 140 million new malwares appeared in 2015
 - 2 millions attempts to steal money via online bank
- Fighting malwares is increasing important

How to Fight Malwares?

Why Studying Big Malwares?

- Previous works on studying malwares
 - Provide invaluable insights
 - Only on a limited amount of malwares
- Studying big malwares
 - "Big": in large scale and with high diversity
 - Exposes new insights

VirusTotal (VT)

- An online service to analyze suspicious files
 - Containing a huge amount of real-world files
 - 43 million suspicious files submitted last Nov.
 - Applying a host of latest anti-virus engines
 - Providing rich metadata

Existing Usage of VirusTotal

- Anti-virus vendors in industry
 - Identify FPs and FNs in their products
 - Fail to consider correlations

- Researchers in academia
 - Identifying users using VT as a test platform
 - Very few other works

Research Opportunities

 Which types of vulnerabilities are more likely to be exploited?

- How effective responses are to new security threats?
- Could we apply machine learning techniques on the VirusTotal data?
- How malwares spread?

Vulnerability Avoidance

Contributions

- An early-stage empirical study on VT data
 - Temporal analysis
 - Submission frequency and family generation rate
 - Burstiness of malwares
 - Distribution study
 - Skewness of malware families
 - Identifying hot malware families
- Identifying key research opportunities from VT

Outline

- Introduction
- Empirical Study on VirusTotal Data
- Research Opportunities
- Conclusion

Outline

- Introduction
- Empirical Study on VirusTotal Data
- Research Opportunities
- Conclusion

Empirical Study

Data Collection

- What to collect for each submission?
 - Metadata
 - File information: size, type
 - Submission information: timestamp, ID, country
 - Different hashes: ssdeep, sha256, md5
 - Analysis results
 - Roughly 50 engines used for each file
- All 43 million submissions in 2015/11

Preprocessing

- Focusing on PE files
- Merging redundant submission reports
- Leveraging Microsoft engine
 - Identifying malwares from benign files
 - Deciding malwares' families

Basic Properties

- Most malwares submitted once in 2015/11
 - Average submission number is 1.17
- Most malwares > 16 KB && < 2MB
- Most malwares are 32-bit

Empirical Study

Malware Family Generation Rate

Observation 1: 100-400 new malware families appear each day.

Temporal Locality (I)

- Definition
 - How bursty malwares in the same family appear
- Cache mechanism
 - Cache design
 - Address: malware family
 - Time: submission timestamp
 - Cache hit: new submission's family in the cache
 - Cache setting
 - Setting block size to be 1, no prefetching, LRU

Temporal Locality (II)

Observation 2: The occurrence of malwares in each family has strong temporal locality.

Temporal Locality (III)

- Online malware occurrence prediction
 - Updating cache content once a day
 - Fixing cache size to be 200

Empirical Study

Submission Country Distribution

- Submitted from 164 countries
- Top 5 countries include
 - Canada, USA, China, France, and Germany

Malware Family Distribution

Observation 3: Distributions of malwares are highly skewed in countries and malware families.

Outline

- Introduction
- Empirical Study on VirusTotal Data
- Research Opportunities
- Conclusion

Correlation Mining

- Information on VirusTotal
 - Metadata fields
 - Static features from executable
 - Dynamic behaviors
- Correlation mining
 - Which features/behaviors are more suspicious?
 - Which features/behaviors are ignored?

Evaluating Vendors' Reports

- 50+ different engines used for each submission
 - Detailed detection results
 - How detection results change
- Questions to answer?
 - Are there influences between different vendors?
 - How to combine results from different vendors?

Studying Other File Types

- We only study PE files
- Question to answer?
 - How other malicious files distribute?
 - How other malicious files behave?

Machine Learning

- A huge set of labeled malwares on VirusTotal
- How about applying machine learning?
 - Training models using VT data
 - Using trained models to detect/classify malwares
- Questions to answer?
 - Which features on VT are useful?
 - Whether extracting features not on VT scalable?

Conclusion

- An early-stage empirical study on VT data
 - Temporal properties
 - Distribution properties
- Research Opportunities
 - Leveraging more information
 - Mining correlations
 - Applying machine learning

Thanks a lot!

