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Combating Malwares is Critical

* Definition of malwares
— A variety of hostile or intrusive software

e Malwares are common and severe

— 140 million new malwares appeared in 2015
— 2 millions attempts to steal money via online bank

* Fighting malwaresis increasing important
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Why Studying Big Malwares?

* Previous works on studying malwares
— Provideinvaluable insights
— Only on a limited amount of malwares

e Studying big malwares
— “Big”: in large scale and with high diversity
— Exposes new insights



VirusTotal (VT)

* Anonline service to analyze suspicious files

— Containing a huge amount of real-world files
* 43 millionsuspiciousfiles submitted last Nov.

— Applying a host of latest anti-virus engines

— Providing rich metadata
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Existing Usage of VirusTotal

* Anti-virusvendors in industry
— |dentify FPs and FNs in their products
— Fail to consider correlations

* Researchersin academia
— ldentifying users using VT as a test platform
— Very few other works



Research Opportunities
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Contributions

* An early-stage empirical studyon VT data
— Temporal analysis

* Submission frequency and family generation rate
e Burstinessof malwares
— Distribution study

e Skewness of malware families
* Identifyinghot malware families

* |dentifying key research opportunitiesfrom VT



* |ntroduction

 Empirical Study on VirusTotal Data
e Research Opportunities

* Conclusion



Outline

 Introduction

* Empirical Study on VirusTotal Data
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Data Collection

e What to collect for each submission?
— Metadata
* Fileinformation:size, type

* Submissioninformation:timestamp, ID, country
e Different hashes: ssdeep, sha256, md5

— Analysis results
* Roughly 50 engines used for each file

e All 43 million submissionsin 2015/11



Preprocessing

* Focusingon PE files
* Merging redundant submission reports
* Leveraging Microsoft engine

— ldentifying malwares from benign files
— Deciding malwares’ families
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Basic Properties

* Most malwares submitted once in 2015/11
— Average submission numberis 1.17

e Most malwares> 16 KB && < 2MB
e Most malwares are 32-bit
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Malware Family Generation Rate

Observation 1: 100-400 new
malware families appear each day.

# of new malware families appeared




Temporal Locality (I)

* Definition
— How bursty malwares in the same family appear

e Cache mechanism
— Cache design

e Address: malware family

e Time: submission timestamp

e Cache hit: new submission’sfamilyin the cache
— Cache setting

e Settingblockssize to be 1, no prefetching, LRU



Temporal Locality (Il)

Observation 2: The occurrence of
malwares in each family has strong
temporal locality.
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Temporal Locality (1)

* Online malware occurrence prediction
— Updating cache contentonce a day
— Fixing cache size to be 200
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Submission Country Distribution

e Submitted from 164 countries
* Top 5 countriesinclude

— Canada, USA, China, France, and Germany
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Malware Family Distribution

Observation 3: Distributions of malwares
are highly skewed in countries and
malware families.
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 Empirical Study on VirusTotal Data



Correlation Mining

* |Information on VirusTotal
— Metadata fields
— Static features from executable
— Dynamic behaviors

* Correlation mining

— Which features/behaviors are more suspicious?
— Which features/behaviors are ignored?



Evaluating Vendors’ Reports

* 50+ differentengines used for each submission
— Detailed detection results
— How detection results change
* Questionsto answer?
— Are there influences between different vendors?
— How to combine results from differentvendors?



Studying Other File Types

 We only study PE files

e Questionto answer?
— How other malicious files distribute?
— How other malicious files behave?
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Machine Learning

* A huge set of labeled malwares on VirusTotal
* How about applying machine learning?

— Training models using VT data
— Using trained models to detect/classify malwares
 Questionsto answer?

— Which features on VT are useful?
— Whether extracting features not on VT scalable?



Conclusion

* An early-stage empirical studyon VT data
— Temporal properties
— Distribution properties
e Research Opportunities
— Leveraging more information
— Mining correlations
— Applying machine learning
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