Learning from Big Malwares

Linhai Song, Heqing Huang, Wu Zhou, Wenfei Wu, and Yiying Zhang
Combating Malwares is Critical

• Definition of malwares
 – A variety of hostile or intrusive software

• Malwares are common and severe
 – 140 million new malwares appeared in 2015
 – 2 millions attempts to steal money via online bank

• Fighting malwares is increasing important
How to Fight Malwares?

Vulnerability Avoidance

Threat Prevention

Understanding Malwares

End User Education
Why Studying Big Malwares?

• Previous works on studying malwares
 – Provide invaluable insights
 – Only on a limited amount of malwares

• Studying big malwares
 – “Big”: in large scale and with high diversity
 – Exposes new insights
VirusTotal (VT)

• An online service to analyze suspicious files
 – Containing a huge amount of real-world files
 • 43 million suspicious files submitted last Nov.
 – Applying a host of latest anti-virus engines
 – Providing rich metadata
Existing Usage of VirusTotal

- Anti-virus vendors in industry
 - Identify FPs and FNs in their products
 - Fail to consider correlations

- Researchers in academia
 - Identifying users using VT as a test platform
 - Very few other works
Research Opportunities

- Which types of vulnerabilities are more likely to be exploited?

Threat Prevention

- How effective responses are to new security threats?
- Could we apply machine learning techniques on the VirusTotal data?
- How malwares spread?

Vulnerability Avoidance

End User Education

VirusTotal
Contributions

- An early-stage empirical study on VT data
 - Temporal analysis
 - Submission frequency and family generation rate
 - Burstiness of malwares
 - Distribution study
 - Skewness of malware families
 - Identifying hot malware families
- Identifying key research opportunities from VT
Outline

• Introduction
• Empirical Study on VirusTotal Data
• Research Opportunities
• Conclusion
Outline

• Introduction
• Empirical Study on VirusTotal Data
• Research Opportunities
• Conclusion
Empirical Study

Step 1

Downloads

Data Collection

Temporal Properties

Distribution Properties
Data Collection

• What to collect for each submission?
 – Metadata
 • File information: size, type
 • Submission information: timestamp, ID, country
 • Different hashes: ssdeep, sha256, md5
 – Analysis results
 • Roughly 50 engines used for each file

• All 43 million submissions in 2015/11
Preprocessing

- Focusing on PE files
- Merging redundant submission reports
- Leveraging Microsoft engine
 - Identifying malwares from benign files
 - Deciding malwares’ families

![Pie chart showing file types and largest number of submissions.]

![Graph showing submissions, PE submissions, and PE malwares over time.]

- PE 40%
- Audio+Video 3%
- Office 3%
- Text 4%
- Image 4%
- PDF 6%
- ZIP 7%
- Web page 7%
- Android 7%
- Other 5%
- Unknown 11%
Basic Properties

- Most malwares submitted once in 2015/11
 - Average submission number is 1.17
- Most malwares > 16 KB && < 2MB
- Most malwares are 32-bit

[Graph showing file size distribution with peaks at 16 KB and 2 MB]
Empirical Study

Step 2

Temporal Properties

Downloads

Data Collection

Distribution Properties
Observation 1: 100-400 new malware families appear each day.
Temporal Locality (I)

• Definition
 – How bursty malwares in the same family appear

• Cache mechanism
 – Cache design
 • Address: malware family
 • Time: submission timestamp
 • Cache hit: new submission’s family in the cache
 – Cache setting
 • Setting block size to be 1, no prefetching, LRU
Observation 2: The occurrence of malwares in each family has strong temporal locality.
Temporal Locality (III)

- Online malware occurrence prediction
 - Updating cache content once a day
 - Fixing cache size to be 200
Empirical Study

Data Collection

Temporal Properties

Distribution Properties

Step 3
• Submitted from 164 countries
• Top 5 countries include
 – Canada, USA, China, France, and Germany
Observation 3: Distributions of malwares are highly skewed in countries and malware families.
Outline

• Introduction
• Empirical Study on VirusTotal Data
• Research Opportunities
• Conclusion
• Information on VirusTotal
 – Metadata fields
 – Static features from executable
 – Dynamic behaviors

• Correlation mining
 – Which features/behaviors are more suspicious?
 – Which features/behaviors are ignored?
Evaluating Vendors’ Reports

• 50+ different engines used for each submission
 – Detailed detection results
 – How detection results change

• Questions to answer?
 – Are there influences between different vendors?
 – How to combine results from different vendors?
Studying Other File Types

- We only study PE files
- Question to answer?
 - How other malicious files distribute?
 - How other malicious files behave?
Machine Learning

- A huge set of labeled malwares on VirusTotal
- How about applying machine learning?
 - Training models using VT data
 - Using trained models to detect/classify malwares
- Questions to answer?
 - Which features on VT are useful?
 - Whether extracting features not on VT scalable?
Conclusion

• An early-stage empirical study on VT data
 – Temporal properties
 – Distribution properties

• Research Opportunities
 – Leveraging more information
 – Mining correlations
 – Applying machine learning
Thanks a lot!